/ 1 + n
| 1 0
|----- - ------ for And(n > -oo, n < oo, n != -1)
<1 + n 1 + n
|
| oo otherwise
\
$$\begin{cases} - \frac{0^{n + 1}}{n + 1} + \frac{1}{n + 1} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq -1 \\\infty & \text{otherwise} \end{cases}$$
/ 1 + n
| 1 0
|----- - ------ for And(n > -oo, n < oo, n != -1)
<1 + n 1 + n
|
| oo otherwise
\
$$\begin{cases} - \frac{0^{n + 1}}{n + 1} + \frac{1}{n + 1} & \text{for}\: n > -\infty \wedge n < \infty \wedge n \neq -1 \\\infty & \text{otherwise} \end{cases}$$
Ответ (Неопределённый)
[src] / // 1 + n \
| ||x |
| n ||------ for n != -1|
| x dx = C + |<1 + n |
| || |
/ ||log(x) otherwise |
\\ /
$$\int x^{n}\, dx = C + \begin{cases} \frac{x^{n + 1}}{n + 1} & \text{for}\: n \neq -1 \\\log{\left(x \right)} & \text{otherwise} \end{cases}$$