Перепишите подынтегральное выражение:
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Используем интегрирование по частям:
пусть и пусть dx.
Затем dx.
Чтобы найти :
Интеграл от экспоненты есть он же сам.
Теперь решаем под-интеграл.
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
Интеграл от экспоненты есть он же сам.
Таким образом, результат будет:
Теперь упростить:
Добавляем постоянную интегрирования:
Ответ:
1 / | | 5 x | x *E dx = 120 - 44*E | / 0
0.39559954780201
/ | | 5 x x 5 x 2 x 4 x 3 x x | x *E dx = C - 120*e + x *e - 60*x *e - 5*x *e + 20*x *e + 120*x*e | /