↑ Введите нижнюю границу интеграла и верхнюю границу интеграла b, подинтегральную функцию f(x) - смотрите пример
1 / | | / 3 \ | \x + 8/ dx | / 0
Интегрируем почленно:
Интеграл xnx^{n}xn есть xn+1n+1\frac{x^{n + 1}}{n + 1}n+1xn+1:
∫x3 dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}∫x3dx=4x4
Интеграл от константы есть эта константа, умноженная на переменную интегрирования:
∫8 dx=8x\int 8\, dx = 8 x∫8dx=8x
Результат есть: x44+8x\frac{x^{4}}{4} + 8 x4x4+8x
Теперь упростить:
x4(x3+32)\frac{x}{4} \left(x^{3} + 32\right)4x(x3+32)
Добавляем постоянную интегрирования:
x4(x3+32)+constant\frac{x}{4} \left(x^{3} + 32\right)+ \mathrm{constant}4x(x3+32)+constant
Ответ:
1 / | | / 3 \ | \x + 8/ dx = 33/4 | / 0
8.25
/ | 4 | / 3 \ x | \x + 8/ dx = C + 8*x + -- | 4 /