Выражение (x->y)&(y->x)
Преподаватель очень удивится увидев твоё верное решение 😼
Решение
Подробное решение
$$x \Rightarrow y = y \vee \neg x$$
$$y \Rightarrow x = x \vee \neg y$$
$$\left(x \Rightarrow y\right) \wedge \left(y \Rightarrow x\right) = \left(x \wedge y\right) \vee \left(\neg x \wedge \neg y\right)$$
$$\left(x \wedge y\right) \vee \left(\neg x \wedge \neg y\right)$$
Таблица истинности
+---+---+--------+
| x | y | result |
+===+===+========+
| 0 | 0 | 1 |
+---+---+--------+
| 0 | 1 | 0 |
+---+---+--------+
| 1 | 0 | 0 |
+---+---+--------+
| 1 | 1 | 1 |
+---+---+--------+
$$\left(x \vee \neg y\right) \wedge \left(y \vee \neg x\right)$$
$$\left(x \wedge y\right) \vee \left(\neg x \wedge \neg y\right)$$
$$\left(x \wedge y\right) \vee \left(\neg x \wedge \neg y\right)$$
$$\left(x \vee \neg x\right) \wedge \left(x \vee \neg y\right) \wedge \left(y \vee \neg x\right) \wedge \left(y \vee \neg y\right)$$
В калькуляторе вы сможете упростить выражения, содержащие следующие операции: NOT, XOR, AND, OR, NAND, NOR, NOT, XNOR