Abs(sin(x))<1/2 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: Abs(sin(x))<1/2 (множество решений неравенства)

    Решение

    Вы ввели [src]
    |sin(x)| < 1/2
    sin(x)<12\left|{\sin{\left (x \right )}}\right| < \frac{1}{2}
    Подробное решение
    Дано неравенство:
    sin(x)<12\left|{\sin{\left (x \right )}}\right| < \frac{1}{2}
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    sin(x)=12\left|{\sin{\left (x \right )}}\right| = \frac{1}{2}
    Решаем:
    Дано уравнение
    sin(x)=12\left|{\sin{\left (x \right )}}\right| = \frac{1}{2}
    преобразуем
    sin(x)12=0\left|{\sin{\left (x \right )}}\right| - \frac{1}{2} = 0
    sin(x)12=0\left|{\sin{\left (x \right )}}\right| - \frac{1}{2} = 0
    Сделаем замену
    w=sin(x)w = \left|{\sin{\left (x \right )}}\right|
    Переносим свободные слагаемые (без w)
    из левой части в правую, получим:
    w=12w = \frac{1}{2}
    Получим ответ: w = 1/2
    делаем обратную замену
    sin(x)=w\left|{\sin{\left (x \right )}}\right| = w
    подставляем w:
    x1=69.6386371546x_{1} = -69.6386371546
    x2=3.66519142919x_{2} = -3.66519142919
    x3=100.007366139x_{3} = -100.007366139
    x4=66.497044501x_{4} = -66.497044501
    x5=100.007366139x_{5} = 100.007366139
    x6=43.4586983747x_{6} = -43.4586983747
    x7=78.0162175641x_{7} = -78.0162175641
    x8=88.4881930761x_{8} = 88.4881930761
    x9=62.3082542962x_{9} = -62.3082542962
    x10=2.61799387799x_{10} = 2.61799387799
    x11=71.733032257x_{11} = 71.733032257
    x12=84.2994028713x_{12} = 84.2994028713
    x13=46.6002910282x_{13} = 46.6002910282
    x14=69.6386371546x_{14} = 69.6386371546
    x15=137.706477982x_{15} = -137.706477982
    x16=24.6091424531x_{16} = -24.6091424531
    x17=82.2050077689x_{17} = 82.2050077689
    x18=93.7241808321x_{18} = -93.7241808321
    x19=40.3171057211x_{19} = -40.3171057211
    x20=9.94837673637x_{20} = 9.94837673637
    x21=62.3082542962x_{21} = 62.3082542962
    x22=38.2227106187x_{22} = 38.2227106187
    x23=21.4675497995x_{23} = -21.4675497995
    x24=60.2138591938x_{24} = -60.2138591938
    x25=2.61799387799x_{25} = -2.61799387799
    x26=90.5825881785x_{26} = 90.5825881785
    x27=49.7418836818x_{27} = 49.7418836818
    x28=38.2227106187x_{28} = -38.2227106187
    x29=44.5058959259x_{29} = 44.5058959259
    x30=90.5825881785x_{30} = -90.5825881785
    x31=40.3171057211x_{31} = 40.3171057211
    x32=46.6002910282x_{32} = -46.6002910282
    x33=71.733032257x_{33} = -71.733032257
    x34=47.6474885794x_{34} = 47.6474885794
    x35=63.3554518474x_{35} = -63.3554518474
    x36=56.025068989x_{36} = 56.025068989
    x37=34.0339204139x_{37} = 34.0339204139
    x38=87.4409955249x_{38} = -87.4409955249
    x39=53.9306738866x_{39} = -53.9306738866
    x40=27.7507351067x_{40} = -27.7507351067
    x41=68.5914396034x_{41} = 68.5914396034
    x42=93.7241808321x_{42} = 93.7241808321
    x43=85.3466004225x_{43} = -85.3466004225
    x44=68.5914396034x_{44} = -68.5914396034
    x45=382.750704962x_{45} = -382.750704962
    x46=12.0427718388x_{46} = -12.0427718388
    x47=65.4498469498x_{47} = -65.4498469498
    x48=60.2138591938x_{48} = 60.2138591938
    x49=41.3643032723x_{49} = -41.3643032723
    x50=25.6563400043x_{50} = -25.6563400043
    x51=31.9395253115x_{51} = 31.9395253115
    x52=56.025068989x_{52} = -56.025068989
    x53=18.3259571459x_{53} = -18.3259571459
    x54=5.75958653158x_{54} = -5.75958653158
    x55=22.5147473507x_{55} = 22.5147473507
    x56=75.9218224618x_{56} = 75.9218224618
    x57=82.2050077689x_{57} = -82.2050077689
    x58=84.2994028713x_{58} = -84.2994028713
    x59=16.2315620435x_{59} = -16.2315620435
    x60=49.7418836818x_{60} = -49.7418836818
    x61=25.6563400043x_{61} = 25.6563400043
    x62=18.3259571459x_{62} = 18.3259571459
    x63=9.94837673637x_{63} = -9.94837673637
    x64=57.0722665402x_{64} = -57.0722665402
    x65=34.0339204139x_{65} = -34.0339204139
    x66=97.9129710369x_{66} = -97.9129710369
    x67=53.9306738866x_{67} = 53.9306738866
    x68=66.497044501x_{68} = 66.497044501
    x69=5.75958653158x_{69} = 5.75958653158
    x70=0.523598775598x_{70} = 0.523598775598
    x71=3.66519142919x_{71} = 3.66519142919
    x72=24.6091424531x_{72} = 24.6091424531
    x73=78.0162175641x_{73} = 78.0162175641
    x74=97.9129710369x_{74} = 97.9129710369
    x75=27.7507351067x_{75} = 27.7507351067
    x76=12.0427718388x_{76} = 12.0427718388
    x77=47.6474885794x_{77} = -47.6474885794
    x78=19.3731546971x_{78} = -19.3731546971
    x79=96.8657734857x_{79} = 96.8657734857
    x80=91.6297857297x_{80} = 91.6297857297
    x81=31.9395253115x_{81} = -31.9395253115
    x82=91.6297857297x_{82} = -91.6297857297
    x83=16.2315620435x_{83} = 16.2315620435
    x84=75.9218224618x_{84} = -75.9218224618
    x1=69.6386371546x_{1} = -69.6386371546
    x2=3.66519142919x_{2} = -3.66519142919
    x3=100.007366139x_{3} = -100.007366139
    x4=66.497044501x_{4} = -66.497044501
    x5=100.007366139x_{5} = 100.007366139
    x6=43.4586983747x_{6} = -43.4586983747
    x7=78.0162175641x_{7} = -78.0162175641
    x8=88.4881930761x_{8} = 88.4881930761
    x9=62.3082542962x_{9} = -62.3082542962
    x10=2.61799387799x_{10} = 2.61799387799
    x11=71.733032257x_{11} = 71.733032257
    x12=84.2994028713x_{12} = 84.2994028713
    x13=46.6002910282x_{13} = 46.6002910282
    x14=69.6386371546x_{14} = 69.6386371546
    x15=137.706477982x_{15} = -137.706477982
    x16=24.6091424531x_{16} = -24.6091424531
    x17=82.2050077689x_{17} = 82.2050077689
    x18=93.7241808321x_{18} = -93.7241808321
    x19=40.3171057211x_{19} = -40.3171057211
    x20=9.94837673637x_{20} = 9.94837673637
    x21=62.3082542962x_{21} = 62.3082542962
    x22=38.2227106187x_{22} = 38.2227106187
    x23=21.4675497995x_{23} = -21.4675497995
    x24=60.2138591938x_{24} = -60.2138591938
    x25=2.61799387799x_{25} = -2.61799387799
    x26=90.5825881785x_{26} = 90.5825881785
    x27=49.7418836818x_{27} = 49.7418836818
    x28=38.2227106187x_{28} = -38.2227106187
    x29=44.5058959259x_{29} = 44.5058959259
    x30=90.5825881785x_{30} = -90.5825881785
    x31=40.3171057211x_{31} = 40.3171057211
    x32=46.6002910282x_{32} = -46.6002910282
    x33=71.733032257x_{33} = -71.733032257
    x34=47.6474885794x_{34} = 47.6474885794
    x35=63.3554518474x_{35} = -63.3554518474
    x36=56.025068989x_{36} = 56.025068989
    x37=34.0339204139x_{37} = 34.0339204139
    x38=87.4409955249x_{38} = -87.4409955249
    x39=53.9306738866x_{39} = -53.9306738866
    x40=27.7507351067x_{40} = -27.7507351067
    x41=68.5914396034x_{41} = 68.5914396034
    x42=93.7241808321x_{42} = 93.7241808321
    x43=85.3466004225x_{43} = -85.3466004225
    x44=68.5914396034x_{44} = -68.5914396034
    x45=382.750704962x_{45} = -382.750704962
    x46=12.0427718388x_{46} = -12.0427718388
    x47=65.4498469498x_{47} = -65.4498469498
    x48=60.2138591938x_{48} = 60.2138591938
    x49=41.3643032723x_{49} = -41.3643032723
    x50=25.6563400043x_{50} = -25.6563400043
    x51=31.9395253115x_{51} = 31.9395253115
    x52=56.025068989x_{52} = -56.025068989
    x53=18.3259571459x_{53} = -18.3259571459
    x54=5.75958653158x_{54} = -5.75958653158
    x55=22.5147473507x_{55} = 22.5147473507
    x56=75.9218224618x_{56} = 75.9218224618
    x57=82.2050077689x_{57} = -82.2050077689
    x58=84.2994028713x_{58} = -84.2994028713
    x59=16.2315620435x_{59} = -16.2315620435
    x60=49.7418836818x_{60} = -49.7418836818
    x61=25.6563400043x_{61} = 25.6563400043
    x62=18.3259571459x_{62} = 18.3259571459
    x63=9.94837673637x_{63} = -9.94837673637
    x64=57.0722665402x_{64} = -57.0722665402
    x65=34.0339204139x_{65} = -34.0339204139
    x66=97.9129710369x_{66} = -97.9129710369
    x67=53.9306738866x_{67} = 53.9306738866
    x68=66.497044501x_{68} = 66.497044501
    x69=5.75958653158x_{69} = 5.75958653158
    x70=0.523598775598x_{70} = 0.523598775598
    x71=3.66519142919x_{71} = 3.66519142919
    x72=24.6091424531x_{72} = 24.6091424531
    x73=78.0162175641x_{73} = 78.0162175641
    x74=97.9129710369x_{74} = 97.9129710369
    x75=27.7507351067x_{75} = 27.7507351067
    x76=12.0427718388x_{76} = 12.0427718388
    x77=47.6474885794x_{77} = -47.6474885794
    x78=19.3731546971x_{78} = -19.3731546971
    x79=96.8657734857x_{79} = 96.8657734857
    x80=91.6297857297x_{80} = 91.6297857297
    x81=31.9395253115x_{81} = -31.9395253115
    x82=91.6297857297x_{82} = -91.6297857297
    x83=16.2315620435x_{83} = 16.2315620435
    x84=75.9218224618x_{84} = -75.9218224618
    Данные корни
    x45=382.750704962x_{45} = -382.750704962
    x15=137.706477982x_{15} = -137.706477982
    x3=100.007366139x_{3} = -100.007366139
    x66=97.9129710369x_{66} = -97.9129710369
    x18=93.7241808321x_{18} = -93.7241808321
    x82=91.6297857297x_{82} = -91.6297857297
    x30=90.5825881785x_{30} = -90.5825881785
    x38=87.4409955249x_{38} = -87.4409955249
    x43=85.3466004225x_{43} = -85.3466004225
    x58=84.2994028713x_{58} = -84.2994028713
    x57=82.2050077689x_{57} = -82.2050077689
    x7=78.0162175641x_{7} = -78.0162175641
    x84=75.9218224618x_{84} = -75.9218224618
    x33=71.733032257x_{33} = -71.733032257
    x1=69.6386371546x_{1} = -69.6386371546
    x44=68.5914396034x_{44} = -68.5914396034
    x4=66.497044501x_{4} = -66.497044501
    x47=65.4498469498x_{47} = -65.4498469498
    x35=63.3554518474x_{35} = -63.3554518474
    x9=62.3082542962x_{9} = -62.3082542962
    x24=60.2138591938x_{24} = -60.2138591938
    x64=57.0722665402x_{64} = -57.0722665402
    x52=56.025068989x_{52} = -56.025068989
    x39=53.9306738866x_{39} = -53.9306738866
    x60=49.7418836818x_{60} = -49.7418836818
    x77=47.6474885794x_{77} = -47.6474885794
    x32=46.6002910282x_{32} = -46.6002910282
    x6=43.4586983747x_{6} = -43.4586983747
    x49=41.3643032723x_{49} = -41.3643032723
    x19=40.3171057211x_{19} = -40.3171057211
    x28=38.2227106187x_{28} = -38.2227106187
    x65=34.0339204139x_{65} = -34.0339204139
    x81=31.9395253115x_{81} = -31.9395253115
    x40=27.7507351067x_{40} = -27.7507351067
    x50=25.6563400043x_{50} = -25.6563400043
    x16=24.6091424531x_{16} = -24.6091424531
    x23=21.4675497995x_{23} = -21.4675497995
    x78=19.3731546971x_{78} = -19.3731546971
    x53=18.3259571459x_{53} = -18.3259571459
    x59=16.2315620435x_{59} = -16.2315620435
    x46=12.0427718388x_{46} = -12.0427718388
    x63=9.94837673637x_{63} = -9.94837673637
    x54=5.75958653158x_{54} = -5.75958653158
    x2=3.66519142919x_{2} = -3.66519142919
    x25=2.61799387799x_{25} = -2.61799387799
    x70=0.523598775598x_{70} = 0.523598775598
    x10=2.61799387799x_{10} = 2.61799387799
    x71=3.66519142919x_{71} = 3.66519142919
    x69=5.75958653158x_{69} = 5.75958653158
    x20=9.94837673637x_{20} = 9.94837673637
    x76=12.0427718388x_{76} = 12.0427718388
    x83=16.2315620435x_{83} = 16.2315620435
    x62=18.3259571459x_{62} = 18.3259571459
    x55=22.5147473507x_{55} = 22.5147473507
    x72=24.6091424531x_{72} = 24.6091424531
    x61=25.6563400043x_{61} = 25.6563400043
    x75=27.7507351067x_{75} = 27.7507351067
    x51=31.9395253115x_{51} = 31.9395253115
    x37=34.0339204139x_{37} = 34.0339204139
    x22=38.2227106187x_{22} = 38.2227106187
    x31=40.3171057211x_{31} = 40.3171057211
    x29=44.5058959259x_{29} = 44.5058959259
    x13=46.6002910282x_{13} = 46.6002910282
    x34=47.6474885794x_{34} = 47.6474885794
    x27=49.7418836818x_{27} = 49.7418836818
    x67=53.9306738866x_{67} = 53.9306738866
    x36=56.025068989x_{36} = 56.025068989
    x48=60.2138591938x_{48} = 60.2138591938
    x21=62.3082542962x_{21} = 62.3082542962
    x68=66.497044501x_{68} = 66.497044501
    x41=68.5914396034x_{41} = 68.5914396034
    x14=69.6386371546x_{14} = 69.6386371546
    x11=71.733032257x_{11} = 71.733032257
    x56=75.9218224618x_{56} = 75.9218224618
    x73=78.0162175641x_{73} = 78.0162175641
    x17=82.2050077689x_{17} = 82.2050077689
    x12=84.2994028713x_{12} = 84.2994028713
    x8=88.4881930761x_{8} = 88.4881930761
    x26=90.5825881785x_{26} = 90.5825881785
    x80=91.6297857297x_{80} = 91.6297857297
    x42=93.7241808321x_{42} = 93.7241808321
    x79=96.8657734857x_{79} = 96.8657734857
    x74=97.9129710369x_{74} = 97.9129710369
    x5=100.007366139x_{5} = 100.007366139
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x45x_{0} < x_{45}
    Возьмём например точку
    x0=x45110x_{0} = x_{45} - \frac{1}{10}
    =
    382.850704962-382.850704962
    =
    382.850704962-382.850704962
    подставляем в выражение
    sin(x)<12\left|{\sin{\left (x \right )}}\right| < \frac{1}{2}
    sin(382.850704962)<12\left|{\sin{\left (-382.850704962 \right )}}\right| < \frac{1}{2}
    0.411043808001225 < 1/2

    значит одно из решений нашего неравенства будет при:
    x<382.750704962x < -382.750704962
     _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____          
          \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x45      x15      x3      x66      x18      x82      x30      x38      x43      x58      x57      x7      x84      x33      x1      x44      x4      x47      x35      x9      x24      x64      x52      x39      x60      x77      x32      x6      x49      x19      x28      x65      x81      x40      x50      x16      x23      x78      x53      x59      x46      x63      x54      x2      x25      x70      x10      x71      x69      x20      x76      x83      x62      x55      x72      x61      x75      x51      x37      x22      x31      x29      x13      x34      x27      x67      x36      x48      x21      x68      x41      x14      x11      x56      x73      x17      x12      x8      x26      x80      x42      x79      x74      x5

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x<382.750704962x < -382.750704962
    x>137.706477982x<100.007366139x > -137.706477982 \wedge x < -100.007366139
    x>97.9129710369x<93.7241808321x > -97.9129710369 \wedge x < -93.7241808321
    x>91.6297857297x<90.5825881785x > -91.6297857297 \wedge x < -90.5825881785
    x>87.4409955249x<85.3466004225x > -87.4409955249 \wedge x < -85.3466004225
    x>84.2994028713x<82.2050077689x > -84.2994028713 \wedge x < -82.2050077689
    x>78.0162175641x<75.9218224618x > -78.0162175641 \wedge x < -75.9218224618
    x>71.733032257x<69.6386371546x > -71.733032257 \wedge x < -69.6386371546
    x>68.5914396034x<66.497044501x > -68.5914396034 \wedge x < -66.497044501
    x>65.4498469498x<63.3554518474x > -65.4498469498 \wedge x < -63.3554518474
    x>62.3082542962x<60.2138591938x > -62.3082542962 \wedge x < -60.2138591938
    x>57.0722665402x<56.025068989x > -57.0722665402 \wedge x < -56.025068989
    x>53.9306738866x<49.7418836818x > -53.9306738866 \wedge x < -49.7418836818
    x>47.6474885794x<46.6002910282x > -47.6474885794 \wedge x < -46.6002910282
    x>43.4586983747x<41.3643032723x > -43.4586983747 \wedge x < -41.3643032723
    x>40.3171057211x<38.2227106187x > -40.3171057211 \wedge x < -38.2227106187
    x>34.0339204139x<31.9395253115x > -34.0339204139 \wedge x < -31.9395253115
    x>27.7507351067x<25.6563400043x > -27.7507351067 \wedge x < -25.6563400043
    x>24.6091424531x<21.4675497995x > -24.6091424531 \wedge x < -21.4675497995
    x>19.3731546971x<18.3259571459x > -19.3731546971 \wedge x < -18.3259571459
    x>16.2315620435x<12.0427718388x > -16.2315620435 \wedge x < -12.0427718388
    x>9.94837673637x<5.75958653158x > -9.94837673637 \wedge x < -5.75958653158
    x>3.66519142919x<2.61799387799x > -3.66519142919 \wedge x < -2.61799387799
    x>0.523598775598x<2.61799387799x > 0.523598775598 \wedge x < 2.61799387799
    x>3.66519142919x<5.75958653158x > 3.66519142919 \wedge x < 5.75958653158
    x>9.94837673637x<12.0427718388x > 9.94837673637 \wedge x < 12.0427718388
    x>16.2315620435x<18.3259571459x > 16.2315620435 \wedge x < 18.3259571459
    x>22.5147473507x<24.6091424531x > 22.5147473507 \wedge x < 24.6091424531
    x>25.6563400043x<27.7507351067x > 25.6563400043 \wedge x < 27.7507351067
    x>31.9395253115x<34.0339204139x > 31.9395253115 \wedge x < 34.0339204139
    x>38.2227106187x<40.3171057211x > 38.2227106187 \wedge x < 40.3171057211
    x>44.5058959259x<46.6002910282x > 44.5058959259 \wedge x < 46.6002910282
    x>47.6474885794x<49.7418836818x > 47.6474885794 \wedge x < 49.7418836818
    x>53.9306738866x<56.025068989x > 53.9306738866 \wedge x < 56.025068989
    x>60.2138591938x<62.3082542962x > 60.2138591938 \wedge x < 62.3082542962
    x>66.497044501x<68.5914396034x > 66.497044501 \wedge x < 68.5914396034
    x>69.6386371546x<71.733032257x > 69.6386371546 \wedge x < 71.733032257
    x>75.9218224618x<78.0162175641x > 75.9218224618 \wedge x < 78.0162175641
    x>82.2050077689x<84.2994028713x > 82.2050077689 \wedge x < 84.2994028713
    x>88.4881930761x<90.5825881785x > 88.4881930761 \wedge x < 90.5825881785
    x>91.6297857297x<93.7241808321x > 91.6297857297 \wedge x < 93.7241808321
    x>96.8657734857x<97.9129710369x > 96.8657734857 \wedge x < 97.9129710369
    x>100.007366139x > 100.007366139
    Решение неравенства на графике
    0-70-60-50-40-30-20-101020304050607001
    Быстрый ответ [src]
      /   /-pi           pi\     /5*pi          7*pi\\
    Or|And|---- < x, x < --|, And|---- < x, x < ----||
      \   \ 6            6 /     \ 6             6  //
    (π6<xx<π6)(5π6<xx<7π6)\left(- \frac{\pi}{6} < x \wedge x < \frac{\pi}{6}\right) \vee \left(\frac{5 \pi}{6} < x \wedge x < \frac{7 \pi}{6}\right)
    Быстрый ответ 2 [src]
     -pi   pi     5*pi  7*pi 
    (----, --) U (----, ----)
      6    6       6     6   
    x(π6,π6)(5π6,7π6)x \in \left(- \frac{\pi}{6}, \frac{\pi}{6}\right) \cup \left(\frac{5 \pi}{6}, \frac{7 \pi}{6}\right)