(sqrt(2)+1)^((6*x-6)/(x+1))<=(sqrt(2)-1)^(-x) (неравенство) Учитель очень удивится увидев твоё верное решение 😼 Укажите решение неравенства: (sqrt(2)+1)^((6*x-6)/(x+1))<=(sqrt(2)-1)^(-x) (множество решений неравенства)
Решение
Подробное решение
Дано неравенство:( 1 + 2 ) 6 x − 6 x + 1 ≤ ( − 1 + 2 ) − x \left(1 + \sqrt{2}\right)^{\frac{6 x - 6}{x + 1}} \leq \left(-1 + \sqrt{2}\right)^{- x} ( 1 + 2 ) x + 1 6 x − 6 ≤ ( − 1 + 2 ) − x Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:( 1 + 2 ) 6 x − 6 x + 1 = ( − 1 + 2 ) − x \left(1 + \sqrt{2}\right)^{\frac{6 x - 6}{x + 1}} = \left(-1 + \sqrt{2}\right)^{- x} ( 1 + 2 ) x + 1 6 x − 6 = ( − 1 + 2 ) − x Решаем:x 1 = − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) x_{1} = - \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right) x 1 = − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) x 2 = 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) x_{2} = \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) x 2 = 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) x 1 = − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) x_{1} = - \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right) x 1 = − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) x 2 = 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) x_{2} = \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) x 2 = 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) Данные корниx 2 = 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) x_{2} = \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) x 2 = 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) x 1 = − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) x_{1} = - \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right) x 1 = − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) являются точками смены знака неравенства в решениях. Сначала определимся со знаком до крайней левой точки:x 0 ≤ x 2 x_{0} \leq x_{2} x 0 ≤ x 2 Возьмём например точкуx 0 = x 2 − 1 10 x_{0} = x_{2} - \frac{1}{10} x 0 = x 2 − 10 1 = _____________________________________________________________________________
/ / / 36\\
/ | |/ ___\ ||
/ | log\\1 + \/ 2 / /| / 6 \
/ 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\|
\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // 1
-------------------------------------------------------------------------------------------------------------------- - --
1/ ___\ 10
2*log \-1 + \/ 2 / =− 1 10 + 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) - \frac{1}{10} + \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) − 10 1 + 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) подставляем в выражение( 1 + 2 ) 6 x − 6 x + 1 ≤ ( − 1 + 2 ) − x \left(1 + \sqrt{2}\right)^{\frac{6 x - 6}{x + 1}} \leq \left(-1 + \sqrt{2}\right)^{- x} ( 1 + 2 ) x + 1 6 x − 6 ≤ ( − 1 + 2 ) − x / _____________________________________________________________________________ \
| / / / 36\\ |
| / | |/ ___\ || |
| / | log\\1 + \/ 2 / /| / 6 \ |
| / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| |
|\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // 1 |
6*|-------------------------------------------------------------------------------------------------------------------- - --| - 6
| 1/ ___\ 10|
\ 2*log \-1 + \/ 2 / /
---------------------------------------------------------------------------------------------------------------------------------
1
/ _____________________________________________________________________________ \ / _____________________________________________________________________________ \
| / / / 36\\ | | / / / 36\\ |
| / | |/ ___\ || | | / | |/ ___\ || |
| / | log\\1 + \/ 2 / /| / 6 \ | | / | log\\1 + \/ 2 / /| / 6 \ |
| / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| | | / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| |
|\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // 1 | |\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // 1 |
|-------------------------------------------------------------------------------------------------------------------- - -- + 1| -|-------------------------------------------------------------------------------------------------------------------- - --|
| 1/ ___\ 10 | | 1/ ___\ 10|
\ 2*log \-1 + \/ 2 / / \ 2*log \-1 + \/ 2 / /
/ ___ \ / ___ \
\\/ 2 + 1/ <= \\/ 2 - 1/ / _____________________________________________________________________________ \
| / / / 36\\ |
| / | |/ ___\ || |
| / | log\\1 + \/ 2 / /| / 6 \|
| / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\||
33 3*\\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 /// _____________________________________________________________________________
- -- + ------------------------------------------------------------------------------------------------------------------------ / / / 36\\
5 / ___\ / | |/ ___\ ||
log\-1 + \/ 2 / / | log\\1 + \/ 2 / /| / 6 \
------------------------------------------------------------------------------------------------------------------------------- / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\|
_____________________________________________________________________________ <= 1 \/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 //
/ / / 36\\ -- - --------------------------------------------------------------------------------------------------------------------
/ | |/ ___\ || 10 / ___\
/ | log\\1 + \/ 2 / /| / 6 \ 2*log\-1 + \/ 2 /
/ 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| / ___\
9 \/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // \-1 + \/ 2 /
-- + --------------------------------------------------------------------------------------------------------------------
10 / ___\
2*log\-1 + \/ 2 /
/ ___\
\1 + \/ 2 / значит одно из решений нашего неравенства будет при:x ≤ 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) x \leq \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) x ≤ 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) _____ _____
\ /
-------•-------•-------
x2 x1 Другие решения неравенства будем получать переходом на следующий полюс и т.д. Ответ:x ≤ 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) x \leq \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) x ≤ 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) x ≥ − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) x \geq - \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right) x ≥ − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) )
Решение неравенства на графике
/ / _____________________________________________________________________________ \ / / _____________________________________________________________________________ \ \\
| | / / / 36\\ | | | / / / 36\\ | ||
| | / | |/ ___\ || | | | / | |/ ___\ || | ||
| | / | log\\1 + \/ 2 / /| / 6 \ | | | / | log\\1 + \/ 2 / /| / 6 \| ||
| | / 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| | | | / 2/ ___\ 2/ ___\ |/ ___\ | | / ___\ / ___\|| ||
| | \/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // | |-\\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / + log\-\1 + \/ 2 / *\1 - \/ 2 /// ||
Or|And|x <= --------------------------------------------------------------------------------------------------------------------, -1 < x|, And|------------------------------------------------------------------------------------------------------------------------ <= x, x < oo||
| | / ___\ | | / ___\ ||
\ \ 2*log\-1 + \/ 2 / / \ 2*log\-1 + \/ 2 / // ( x ≤ 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) ∧ − 1 < x ) ∨ ( − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) ≤ x ∧ x < ∞ ) \left(x \leq \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right) \wedge -1 < x\right) \vee \left(- \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right) \leq x \wedge x < \infty\right) x ≤ 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ∧ − 1 < x ∨ − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ≤ x ∧ x < ∞ _____________________________________________________________________________ / _____________________________________________________________________________ \
/ / / 36\\ | / / / 36\\ |
/ | |/ ___\ || | / | |/ ___\ || |
/ | log\\1 + \/ 2 / /| / 6 \ | / | log\\1 + \/ 2 / /| / 6 \|
/ 2/ ___\ 2/ ___\ |/ ___\ | |/ ___\ / ___\| | / 2/ ___\ 2/ ___\ |/ ___\ | | / ___\ / ___\||
\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / - log\\1 + \/ 2 / *\-1 + \/ 2 // -\\/ log \-1 + \/ 2 / + 36*log \1 + \/ 2 / + log\\-1 + \/ 2 / / + log\-\1 + \/ 2 / *\1 - \/ 2 ///
(-1, --------------------------------------------------------------------------------------------------------------------] U [------------------------------------------------------------------------------------------------------------------------, oo)
/ ___\ / ___\
2*log\-1 + \/ 2 / 2*log\-1 + \/ 2 / x ∈ ( − 1 , 1 2 log ( − 1 + 2 ) ( − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ) ] ∪ [ − 1 2 log ( − 1 + 2 ) ( log ( ( − 1 + 2 ) log ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) ) , ∞ ) x \in \left(-1, \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(- \log{\left (\left(-1 + \sqrt{2}\right) \left(1 + \sqrt{2}\right)^{6} \right )} + \sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}}\right)\right] \cup \left[- \frac{1}{2 \log{\left (-1 + \sqrt{2} \right )}} \left(\sqrt{\log{\left (\left(-1 + \sqrt{2}\right)^{\log{\left (\left(1 + \sqrt{2}\right)^{36} \right )}} \right )} + \log^{2}{\left (-1 + \sqrt{2} \right )} + 36 \log^{2}{\left (1 + \sqrt{2} \right )}} + \log{\left (- \left(1 + \sqrt{2}\right)^{6} \left(- \sqrt{2} + 1\right) \right )}\right), \infty\right) x ∈ − 1 , 2 log ( − 1 + 2 ) 1 − log ( ( − 1 + 2 ) ( 1 + 2 ) 6 ) + log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) ∪ − 2 log ( − 1 + 2 ) 1 log ( ( − 1 + 2 ) l o g ( ( 1 + 2 ) 36 ) ) + log 2 ( − 1 + 2 ) + 36 log 2 ( 1 + 2 ) + log ( − ( 1 + 2 ) 6 ( − 2 + 1 ) ) , ∞