Решите неравенство |x-7|/3<2 (модуль от х минус 7| делить на 3 меньше 2) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

|x-7|/3<2 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: |x-7|/3<2 (множество решений неравенства)

    Решение

    Вы ввели [src]
    |x - 7|    
    ------- < 2
       3       
    $$\frac{1}{3} \left|{x - 7}\right| < 2$$
    Подробное решение
    Дано неравенство:
    $$\frac{1}{3} \left|{x - 7}\right| < 2$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$\frac{1}{3} \left|{x - 7}\right| = 2$$
    Решаем:
    Для каждого выражения под модулем в ур-нии
    допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
    решаем получившиеся ур-ния.

    1.
    $$x - 7 \geq 0$$
    или
    $$7 \leq x \wedge x < \infty$$
    получаем ур-ние
    $$\frac{1}{3} \left(x - 7\right) - 2 = 0$$
    упрощаем, получаем
    $$\frac{x}{3} - \frac{13}{3} = 0$$
    решение на этом интервале:
    $$x_{1} = 13$$

    2.
    $$x - 7 < 0$$
    или
    $$-\infty < x \wedge x < 7$$
    получаем ур-ние
    $$\frac{1}{3} \left(- x + 7\right) - 2 = 0$$
    упрощаем, получаем
    $$- \frac{x}{3} + \frac{1}{3} = 0$$
    решение на этом интервале:
    $$x_{2} = 1$$


    $$x_{1} = 13$$
    $$x_{2} = 1$$
    $$x_{1} = 13$$
    $$x_{2} = 1$$
    Данные корни
    $$x_{2} = 1$$
    $$x_{1} = 13$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{2}$$
    Возьмём например точку
    $$x_{0} = x_{2} - \frac{1}{10}$$
    =
    $$\frac{9}{10}$$
    =
    $$\frac{9}{10}$$
    подставляем в выражение
    $$\frac{1}{3} \left|{x - 7}\right| < 2$$
    $$\frac{1}{3} \left|{-7 + \frac{9}{10}}\right| < 2$$
    61    
    -- < 2
    30    

    но
    61    
    -- > 2
    30    

    Тогда
    $$x < 1$$
    не выполняется
    значит одно из решений нашего неравенства будет при:
    $$x > 1 \wedge x < 13$$
             _____  
            /     \  
    -------ο-------ο-------
           x2      x1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(1 < x, x < 13)
    $$1 < x \wedge x < 13$$
    Быстрый ответ 2 [src]
    (1, 13)
    $$x \in \left(1, 13\right)$$