Решите неравенство 1/x<5 (1 делить на х меньше 5) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

1/x<5 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 1/x<5 (множество решений неравенства)

    Решение

    Вы ввели [src]
    1    
    - < 5
    x    
    $$\frac{1}{x} < 5$$
    Подробное решение
    Дано неравенство:
    $$\frac{1}{x} < 5$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$\frac{1}{x} = 5$$
    Решаем:
    Дано уравнение:
    $$\frac{1}{x} = 5$$
    Используем правило пропорций:
    Из a1/b1 = a2/b2 следует a1*b2 = a2*b1,
    В нашем случае
    a1 = 1

    b1 = -1/5

    a2 = 1

    b2 = -x

    зн. получим ур-ние
    $$- x = - \frac{1}{5}$$
    $$- x = - \frac{1}{5}$$
    Разделим обе части ур-ния на -1
    x = -1/5 / (-1)

    Получим ответ: x = 1/5
    $$x_{1} = \frac{1}{5}$$
    $$x_{1} = \frac{1}{5}$$
    Данные корни
    $$x_{1} = \frac{1}{5}$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$\frac{1}{10}$$
    =
    $$\frac{1}{10}$$
    подставляем в выражение
    $$\frac{1}{x} < 5$$
      1    
    10  < 5

    10 < 5

    но
    10 > 5

    Тогда
    $$x < \frac{1}{5}$$
    не выполняется
    значит решение неравенства будет при:
    $$x > \frac{1}{5}$$
             _____  
            /
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    Or(And(-oo < x, x < 0), And(1/5 < x, x < oo))
    $$\left(-\infty < x \wedge x < 0\right) \vee \left(\frac{1}{5} < x \wedge x < \infty\right)$$
    Быстрый ответ 2 [src]
    (-oo, 0) U (1/5, oo)
    $$x \in \left(-\infty, 0\right) \cup \left(\frac{1}{5}, \infty\right)$$