sin(t)>1/2 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: sin(t)>1/2 (множество решений неравенства)

    Решение

    Вы ввели [src]
    sin(t) > 1/2
    sin(t)>12\sin{\left (t \right )} > \frac{1}{2}
    Подробное решение
    Дано неравенство:
    sin(t)>12\sin{\left (t \right )} > \frac{1}{2}
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    sin(t)=12\sin{\left (t \right )} = \frac{1}{2}
    Решаем:
    Дано уравнение
    sin(t)=12\sin{\left (t \right )} = \frac{1}{2}
    преобразуем
    sin(t)12=0\sin{\left (t \right )} - \frac{1}{2} = 0
    sin(t)12=0\sin{\left (t \right )} - \frac{1}{2} = 0
    Сделаем замену
    w=sin(t)w = \sin{\left (t \right )}
    Переносим свободные слагаемые (без w)
    из левой части в правую, получим:
    w=12w = \frac{1}{2}
    Получим ответ: w = 1/2
    делаем обратную замену
    sin(t)=w\sin{\left (t \right )} = w
    подставляем w:
    x1=35.0811179651x_{1} = -35.0811179651
    x2=81.1578102177x_{2} = -81.1578102177
    x3=30.8923277603x_{3} = -30.8923277603
    x4=66.497044501x_{4} = -66.497044501
    x5=17438.4572213x_{5} = 17438.4572213
    x6=28.7979326579x_{6} = -28.7979326579
    x7=2.61799387799x_{7} = 2.61799387799
    x8=91.6297857297x_{8} = -91.6297857297
    x9=71.733032257x_{9} = 71.733032257
    x10=138.753675534x_{10} = 138.753675534
    x11=6.80678408278x_{11} = 6.80678408278
    x12=84.2994028713x_{12} = 84.2994028713
    x13=19.3731546971x_{13} = 19.3731546971
    x14=69.6386371546x_{14} = 69.6386371546
    x15=88.4881930761x_{15} = 88.4881930761
    x16=59.1666616426x_{16} = 59.1666616426
    x17=93.7241808321x_{17} = -93.7241808321
    x18=22.5147473507x_{18} = -22.5147473507
    x19=46.6002910282x_{19} = 46.6002910282
    x20=49.7418836818x_{20} = -49.7418836818
    x21=24.6091424531x_{21} = -24.6091424531
    x22=38.2227106187x_{22} = 38.2227106187
    x23=60.2138591938x_{23} = -60.2138591938
    x24=90.5825881785x_{24} = 90.5825881785
    x25=44.5058959259x_{25} = 44.5058959259
    x26=43.4586983747x_{26} = -43.4586983747
    x27=40.3171057211x_{27} = 40.3171057211
    x28=94.7713783833x_{28} = 94.7713783833
    x29=85.3466004225x_{29} = -85.3466004225
    x30=134.564885329x_{30} = 134.564885329
    x31=79.0634151153x_{31} = -79.0634151153
    x32=34.0339204139x_{32} = 34.0339204139
    x33=87.4409955249x_{33} = -87.4409955249
    x34=101.05456369x_{34} = 101.05456369
    x35=74.8746249106x_{35} = -74.8746249106
    x36=21.4675497995x_{36} = 21.4675497995
    x37=12.0427718388x_{37} = -12.0427718388
    x38=52.8834763354x_{38} = 52.8834763354
    x39=50.789081233x_{39} = 50.789081233
    x40=68.5914396034x_{40} = -68.5914396034
    x41=62.3082542962x_{41} = -62.3082542962
    x42=100.007366139x_{42} = -100.007366139
    x43=627.794931942x_{43} = -627.794931942
    x44=41.3643032723x_{44} = -41.3643032723
    x45=13.08996939x_{45} = 13.08996939
    x46=31.9395253115x_{46} = 31.9395253115
    x47=56.025068989x_{47} = -56.025068989
    x48=18.3259571459x_{48} = -18.3259571459
    x49=75.9218224618x_{49} = 75.9218224618
    x50=3.66519142919x_{50} = -3.66519142919
    x51=2650.98060085x_{51} = -2650.98060085
    x52=16.2315620435x_{52} = -16.2315620435
    x53=25.6563400043x_{53} = 25.6563400043
    x54=5.75958653158x_{54} = -5.75958653158
    x55=63.3554518474x_{55} = 63.3554518474
    x56=15.1843644924x_{56} = 15.1843644924
    x57=57.0722665402x_{57} = 57.0722665402
    x58=97.9129710369x_{58} = -97.9129710369
    x59=53.9306738866x_{59} = -53.9306738866
    x60=0.523598775598x_{60} = 0.523598775598
    x61=37.1755130675x_{61} = -37.1755130675
    x62=78.0162175641x_{62} = 78.0162175641
    x63=65.4498469498x_{63} = 65.4498469498
    x64=72.7802298082x_{64} = -72.7802298082
    x65=27.7507351067x_{65} = 27.7507351067
    x66=8.90117918517x_{66} = 8.90117918517
    x67=47.6474885794x_{67} = -47.6474885794
    x68=4454.25478401x_{68} = -4454.25478401
    x69=96.8657734857x_{69} = 96.8657734857
    x70=9.94837673637x_{70} = -9.94837673637
    x71=82.2050077689x_{71} = 82.2050077689
    x1=35.0811179651x_{1} = -35.0811179651
    x2=81.1578102177x_{2} = -81.1578102177
    x3=30.8923277603x_{3} = -30.8923277603
    x4=66.497044501x_{4} = -66.497044501
    x5=17438.4572213x_{5} = 17438.4572213
    x6=28.7979326579x_{6} = -28.7979326579
    x7=2.61799387799x_{7} = 2.61799387799
    x8=91.6297857297x_{8} = -91.6297857297
    x9=71.733032257x_{9} = 71.733032257
    x10=138.753675534x_{10} = 138.753675534
    x11=6.80678408278x_{11} = 6.80678408278
    x12=84.2994028713x_{12} = 84.2994028713
    x13=19.3731546971x_{13} = 19.3731546971
    x14=69.6386371546x_{14} = 69.6386371546
    x15=88.4881930761x_{15} = 88.4881930761
    x16=59.1666616426x_{16} = 59.1666616426
    x17=93.7241808321x_{17} = -93.7241808321
    x18=22.5147473507x_{18} = -22.5147473507
    x19=46.6002910282x_{19} = 46.6002910282
    x20=49.7418836818x_{20} = -49.7418836818
    x21=24.6091424531x_{21} = -24.6091424531
    x22=38.2227106187x_{22} = 38.2227106187
    x23=60.2138591938x_{23} = -60.2138591938
    x24=90.5825881785x_{24} = 90.5825881785
    x25=44.5058959259x_{25} = 44.5058959259
    x26=43.4586983747x_{26} = -43.4586983747
    x27=40.3171057211x_{27} = 40.3171057211
    x28=94.7713783833x_{28} = 94.7713783833
    x29=85.3466004225x_{29} = -85.3466004225
    x30=134.564885329x_{30} = 134.564885329
    x31=79.0634151153x_{31} = -79.0634151153
    x32=34.0339204139x_{32} = 34.0339204139
    x33=87.4409955249x_{33} = -87.4409955249
    x34=101.05456369x_{34} = 101.05456369
    x35=74.8746249106x_{35} = -74.8746249106
    x36=21.4675497995x_{36} = 21.4675497995
    x37=12.0427718388x_{37} = -12.0427718388
    x38=52.8834763354x_{38} = 52.8834763354
    x39=50.789081233x_{39} = 50.789081233
    x40=68.5914396034x_{40} = -68.5914396034
    x41=62.3082542962x_{41} = -62.3082542962
    x42=100.007366139x_{42} = -100.007366139
    x43=627.794931942x_{43} = -627.794931942
    x44=41.3643032723x_{44} = -41.3643032723
    x45=13.08996939x_{45} = 13.08996939
    x46=31.9395253115x_{46} = 31.9395253115
    x47=56.025068989x_{47} = -56.025068989
    x48=18.3259571459x_{48} = -18.3259571459
    x49=75.9218224618x_{49} = 75.9218224618
    x50=3.66519142919x_{50} = -3.66519142919
    x51=2650.98060085x_{51} = -2650.98060085
    x52=16.2315620435x_{52} = -16.2315620435
    x53=25.6563400043x_{53} = 25.6563400043
    x54=5.75958653158x_{54} = -5.75958653158
    x55=63.3554518474x_{55} = 63.3554518474
    x56=15.1843644924x_{56} = 15.1843644924
    x57=57.0722665402x_{57} = 57.0722665402
    x58=97.9129710369x_{58} = -97.9129710369
    x59=53.9306738866x_{59} = -53.9306738866
    x60=0.523598775598x_{60} = 0.523598775598
    x61=37.1755130675x_{61} = -37.1755130675
    x62=78.0162175641x_{62} = 78.0162175641
    x63=65.4498469498x_{63} = 65.4498469498
    x64=72.7802298082x_{64} = -72.7802298082
    x65=27.7507351067x_{65} = 27.7507351067
    x66=8.90117918517x_{66} = 8.90117918517
    x67=47.6474885794x_{67} = -47.6474885794
    x68=4454.25478401x_{68} = -4454.25478401
    x69=96.8657734857x_{69} = 96.8657734857
    x70=9.94837673637x_{70} = -9.94837673637
    x71=82.2050077689x_{71} = 82.2050077689
    Данные корни
    x68=4454.25478401x_{68} = -4454.25478401
    x51=2650.98060085x_{51} = -2650.98060085
    x43=627.794931942x_{43} = -627.794931942
    x42=100.007366139x_{42} = -100.007366139
    x58=97.9129710369x_{58} = -97.9129710369
    x17=93.7241808321x_{17} = -93.7241808321
    x8=91.6297857297x_{8} = -91.6297857297
    x33=87.4409955249x_{33} = -87.4409955249
    x29=85.3466004225x_{29} = -85.3466004225
    x2=81.1578102177x_{2} = -81.1578102177
    x31=79.0634151153x_{31} = -79.0634151153
    x35=74.8746249106x_{35} = -74.8746249106
    x64=72.7802298082x_{64} = -72.7802298082
    x40=68.5914396034x_{40} = -68.5914396034
    x4=66.497044501x_{4} = -66.497044501
    x41=62.3082542962x_{41} = -62.3082542962
    x23=60.2138591938x_{23} = -60.2138591938
    x47=56.025068989x_{47} = -56.025068989
    x59=53.9306738866x_{59} = -53.9306738866
    x20=49.7418836818x_{20} = -49.7418836818
    x67=47.6474885794x_{67} = -47.6474885794
    x26=43.4586983747x_{26} = -43.4586983747
    x44=41.3643032723x_{44} = -41.3643032723
    x61=37.1755130675x_{61} = -37.1755130675
    x1=35.0811179651x_{1} = -35.0811179651
    x3=30.8923277603x_{3} = -30.8923277603
    x6=28.7979326579x_{6} = -28.7979326579
    x21=24.6091424531x_{21} = -24.6091424531
    x18=22.5147473507x_{18} = -22.5147473507
    x48=18.3259571459x_{48} = -18.3259571459
    x52=16.2315620435x_{52} = -16.2315620435
    x37=12.0427718388x_{37} = -12.0427718388
    x70=9.94837673637x_{70} = -9.94837673637
    x54=5.75958653158x_{54} = -5.75958653158
    x50=3.66519142919x_{50} = -3.66519142919
    x60=0.523598775598x_{60} = 0.523598775598
    x7=2.61799387799x_{7} = 2.61799387799
    x11=6.80678408278x_{11} = 6.80678408278
    x66=8.90117918517x_{66} = 8.90117918517
    x45=13.08996939x_{45} = 13.08996939
    x56=15.1843644924x_{56} = 15.1843644924
    x13=19.3731546971x_{13} = 19.3731546971
    x36=21.4675497995x_{36} = 21.4675497995
    x53=25.6563400043x_{53} = 25.6563400043
    x65=27.7507351067x_{65} = 27.7507351067
    x46=31.9395253115x_{46} = 31.9395253115
    x32=34.0339204139x_{32} = 34.0339204139
    x22=38.2227106187x_{22} = 38.2227106187
    x27=40.3171057211x_{27} = 40.3171057211
    x25=44.5058959259x_{25} = 44.5058959259
    x19=46.6002910282x_{19} = 46.6002910282
    x39=50.789081233x_{39} = 50.789081233
    x38=52.8834763354x_{38} = 52.8834763354
    x57=57.0722665402x_{57} = 57.0722665402
    x16=59.1666616426x_{16} = 59.1666616426
    x55=63.3554518474x_{55} = 63.3554518474
    x63=65.4498469498x_{63} = 65.4498469498
    x14=69.6386371546x_{14} = 69.6386371546
    x9=71.733032257x_{9} = 71.733032257
    x49=75.9218224618x_{49} = 75.9218224618
    x62=78.0162175641x_{62} = 78.0162175641
    x71=82.2050077689x_{71} = 82.2050077689
    x12=84.2994028713x_{12} = 84.2994028713
    x15=88.4881930761x_{15} = 88.4881930761
    x24=90.5825881785x_{24} = 90.5825881785
    x28=94.7713783833x_{28} = 94.7713783833
    x69=96.8657734857x_{69} = 96.8657734857
    x34=101.05456369x_{34} = 101.05456369
    x30=134.564885329x_{30} = 134.564885329
    x10=138.753675534x_{10} = 138.753675534
    x5=17438.4572213x_{5} = 17438.4572213
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x68x_{0} < x_{68}
    Возьмём например точку
    x0=x68110x_{0} = x_{68} - \frac{1}{10}
    =
    4454.35478401-4454.35478401
    =
    4454.35478401-4454.35478401
    подставляем в выражение
    sin(t)>12\sin{\left (t \right )} > \frac{1}{2}
    sin(t)>12\sin{\left (t \right )} > \frac{1}{2}
    sin(t) > 1/2

    Тогда
    x<4454.25478401x < -4454.25478401
    не выполняется
    значит одно из решений нашего неравенства будет при:
    x>4454.25478401x<2650.98060085x > -4454.25478401 \wedge x < -2650.98060085
             _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
            /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x68      x51      x43      x42      x58      x17      x8      x33      x29      x2      x31      x35      x64      x40      x4      x41      x23      x47      x59      x20      x67      x26      x44      x61      x1      x3      x6      x21      x18      x48      x52      x37      x70      x54      x50      x60      x7      x11      x66      x45      x56      x13      x36      x53      x65      x46      x32      x22      x27      x25      x19      x39      x38      x57      x16      x55      x63      x14      x9      x49      x62      x71      x12      x15      x24      x28      x69      x34      x30      x10      x5

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x>4454.25478401x<2650.98060085x > -4454.25478401 \wedge x < -2650.98060085
    x>627.794931942x<100.007366139x > -627.794931942 \wedge x < -100.007366139
    x>97.9129710369x<93.7241808321x > -97.9129710369 \wedge x < -93.7241808321
    x>91.6297857297x<87.4409955249x > -91.6297857297 \wedge x < -87.4409955249
    x>85.3466004225x<81.1578102177x > -85.3466004225 \wedge x < -81.1578102177
    x>79.0634151153x<74.8746249106x > -79.0634151153 \wedge x < -74.8746249106
    x>72.7802298082x<68.5914396034x > -72.7802298082 \wedge x < -68.5914396034
    x>66.497044501x<62.3082542962x > -66.497044501 \wedge x < -62.3082542962
    x>60.2138591938x<56.025068989x > -60.2138591938 \wedge x < -56.025068989
    x>53.9306738866x<49.7418836818x > -53.9306738866 \wedge x < -49.7418836818
    x>47.6474885794x<43.4586983747x > -47.6474885794 \wedge x < -43.4586983747
    x>41.3643032723x<37.1755130675x > -41.3643032723 \wedge x < -37.1755130675
    x>35.0811179651x<30.8923277603x > -35.0811179651 \wedge x < -30.8923277603
    x>28.7979326579x<24.6091424531x > -28.7979326579 \wedge x < -24.6091424531
    x>22.5147473507x<18.3259571459x > -22.5147473507 \wedge x < -18.3259571459
    x>16.2315620435x<12.0427718388x > -16.2315620435 \wedge x < -12.0427718388
    x>9.94837673637x<5.75958653158x > -9.94837673637 \wedge x < -5.75958653158
    x>3.66519142919x<0.523598775598x > -3.66519142919 \wedge x < 0.523598775598
    x>2.61799387799x<6.80678408278x > 2.61799387799 \wedge x < 6.80678408278
    x>8.90117918517x<13.08996939x > 8.90117918517 \wedge x < 13.08996939
    x>15.1843644924x<19.3731546971x > 15.1843644924 \wedge x < 19.3731546971
    x>21.4675497995x<25.6563400043x > 21.4675497995 \wedge x < 25.6563400043
    x>27.7507351067x<31.9395253115x > 27.7507351067 \wedge x < 31.9395253115
    x>34.0339204139x<38.2227106187x > 34.0339204139 \wedge x < 38.2227106187
    x>40.3171057211x<44.5058959259x > 40.3171057211 \wedge x < 44.5058959259
    x>46.6002910282x<50.789081233x > 46.6002910282 \wedge x < 50.789081233
    x>52.8834763354x<57.0722665402x > 52.8834763354 \wedge x < 57.0722665402
    x>59.1666616426x<63.3554518474x > 59.1666616426 \wedge x < 63.3554518474
    x>65.4498469498x<69.6386371546x > 65.4498469498 \wedge x < 69.6386371546
    x>71.733032257x<75.9218224618x > 71.733032257 \wedge x < 75.9218224618
    x>78.0162175641x<82.2050077689x > 78.0162175641 \wedge x < 82.2050077689
    x>84.2994028713x<88.4881930761x > 84.2994028713 \wedge x < 88.4881930761
    x>90.5825881785x<94.7713783833x > 90.5825881785 \wedge x < 94.7713783833
    x>96.8657734857x<101.05456369x > 96.8657734857 \wedge x < 101.05456369
    x>134.564885329x<138.753675534x > 134.564885329 \wedge x < 138.753675534
    x>17438.4572213x > 17438.4572213
    Быстрый ответ [src]
       /pi          5*pi\
    And|-- < t, t < ----|
       \6            6  /
    π6<tt<5π6\frac{\pi}{6} < t \wedge t < \frac{5 \pi}{6}
    Быстрый ответ 2 [src]
     pi  5*pi 
    (--, ----)
     6    6   
    x(π6,5π6)x \in \left(\frac{\pi}{6}, \frac{5 \pi}{6}\right)