sin(t)<=cos(t) (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: sin(t)<=cos(t) (множество решений неравенства)

    Решение

    Вы ввели [src]
    sin(t) <= cos(t)
    sin(t)cos(t)\sin{\left(t \right)} \leq \cos{\left(t \right)}
    Подробное решение
    Дано неравенство:
    sin(t)cos(t)\sin{\left(t \right)} \leq \cos{\left(t \right)}
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    sin(t)=cos(t)\sin{\left(t \right)} = \cos{\left(t \right)}
    Решаем:
    x1=11.7809724509617x_{1} = -11.7809724509617
    x2=69.9004365423729x_{2} = 69.9004365423729
    x3=30.6305283725005x_{3} = -30.6305283725005
    x4=95.0331777710912x_{4} = 95.0331777710912
    x5=71.4712328691678x_{5} = -71.4712328691678
    x6=90.3207887907066x_{6} = -90.3207887907066
    x7=51.0508806208341x_{7} = 51.0508806208341
    x8=25.9181393921158x_{8} = 25.9181393921158
    x9=0.785398163397448x_{9} = 0.785398163397448
    x10=35.3429173528852x_{10} = 35.3429173528852
    x11=33.7721210260903x_{11} = -33.7721210260903
    x12=93.4623814442964x_{12} = -93.4623814442964
    x13=228.550865548657x_{13} = -228.550865548657
    x14=18.0641577581413x_{14} = -18.0641577581413
    x15=19.6349540849362x_{15} = 19.6349540849362
    x16=55.7632696012188x_{16} = -55.7632696012188
    x17=7.06858347057703x_{17} = 7.06858347057703
    x18=73.0420291959627x_{18} = 73.0420291959627
    x19=43.1968989868597x_{19} = -43.1968989868597
    x20=14.9225651045515x_{20} = -14.9225651045515
    x21=57.3340659280137x_{21} = 57.3340659280137
    x22=8.63937979737193x_{22} = -8.63937979737193
    x23=98.174770424681x_{23} = 98.174770424681
    x24=47.9092879672443x_{24} = 47.9092879672443
    x25=46.3384916404494x_{25} = -46.3384916404494
    x26=74.6128255227576x_{26} = -74.6128255227576
    x27=1672.11268987317x_{27} = 1672.11268987317
    x28=29.0597320457056x_{28} = 29.0597320457056
    x29=21.2057504117311x_{29} = -21.2057504117311
    x30=68.329640215578x_{30} = -68.329640215578
    x31=99.7455667514759x_{31} = -99.7455667514759
    x32=79.3252145031423x_{32} = 79.3252145031423
    x33=77.7544181763474x_{33} = -77.7544181763474
    x34=84.037603483527x_{34} = -84.037603483527
    x35=27.4889357189107x_{35} = -27.4889357189107
    x36=85.6083998103219x_{36} = 85.6083998103219
    x37=96.6039740978861x_{37} = -96.6039740978861
    x38=10.2101761241668x_{38} = 10.2101761241668
    x39=13.3517687777566x_{39} = 13.3517687777566
    x40=60.4756585816035x_{40} = 60.4756585816035
    x41=3.92699081698724x_{41} = 3.92699081698724
    x42=36.9137136796801x_{42} = -36.9137136796801
    x43=52.621676947629x_{43} = -52.621676947629
    x44=32.2013246992954x_{44} = 32.2013246992954
    x45=62.0464549083984x_{45} = -62.0464549083984
    x46=58.9048622548086x_{46} = -58.9048622548086
    x47=22.776546738526x_{47} = 22.776546738526
    x48=16.4933614313464x_{48} = 16.4933614313464
    x49=41.6261026600648x_{49} = 41.6261026600648
    x50=80.8960108299372x_{50} = -80.8960108299372
    x51=54.1924732744239x_{51} = 54.1924732744239
    x52=5.49778714378214x_{52} = -5.49778714378214
    x53=101.316363078271x_{53} = 101.316363078271
    x54=49.4800842940392x_{54} = -49.4800842940392
    x55=82.4668071567321x_{55} = 82.4668071567321
    x56=65.1880475619882x_{56} = -65.1880475619882
    x57=66.7588438887831x_{57} = 66.7588438887831
    x58=76.1836218495525x_{58} = 76.1836218495525
    x59=91.8915851175014x_{59} = 91.8915851175014
    x60=87.1791961371168x_{60} = -87.1791961371168
    x61=24.3473430653209x_{61} = -24.3473430653209
    x62=63.6172512351933x_{62} = 63.6172512351933
    x63=2.35619449019234x_{63} = -2.35619449019234
    x64=38.484510006475x_{64} = 38.484510006475
    x65=44.7676953136546x_{65} = 44.7676953136546
    x66=88.7499924639117x_{66} = 88.7499924639117
    x67=40.0553063332699x_{67} = -40.0553063332699
    x1=11.7809724509617x_{1} = -11.7809724509617
    x2=69.9004365423729x_{2} = 69.9004365423729
    x3=30.6305283725005x_{3} = -30.6305283725005
    x4=95.0331777710912x_{4} = 95.0331777710912
    x5=71.4712328691678x_{5} = -71.4712328691678
    x6=90.3207887907066x_{6} = -90.3207887907066
    x7=51.0508806208341x_{7} = 51.0508806208341
    x8=25.9181393921158x_{8} = 25.9181393921158
    x9=0.785398163397448x_{9} = 0.785398163397448
    x10=35.3429173528852x_{10} = 35.3429173528852
    x11=33.7721210260903x_{11} = -33.7721210260903
    x12=93.4623814442964x_{12} = -93.4623814442964
    x13=228.550865548657x_{13} = -228.550865548657
    x14=18.0641577581413x_{14} = -18.0641577581413
    x15=19.6349540849362x_{15} = 19.6349540849362
    x16=55.7632696012188x_{16} = -55.7632696012188
    x17=7.06858347057703x_{17} = 7.06858347057703
    x18=73.0420291959627x_{18} = 73.0420291959627
    x19=43.1968989868597x_{19} = -43.1968989868597
    x20=14.9225651045515x_{20} = -14.9225651045515
    x21=57.3340659280137x_{21} = 57.3340659280137
    x22=8.63937979737193x_{22} = -8.63937979737193
    x23=98.174770424681x_{23} = 98.174770424681
    x24=47.9092879672443x_{24} = 47.9092879672443
    x25=46.3384916404494x_{25} = -46.3384916404494
    x26=74.6128255227576x_{26} = -74.6128255227576
    x27=1672.11268987317x_{27} = 1672.11268987317
    x28=29.0597320457056x_{28} = 29.0597320457056
    x29=21.2057504117311x_{29} = -21.2057504117311
    x30=68.329640215578x_{30} = -68.329640215578
    x31=99.7455667514759x_{31} = -99.7455667514759
    x32=79.3252145031423x_{32} = 79.3252145031423
    x33=77.7544181763474x_{33} = -77.7544181763474
    x34=84.037603483527x_{34} = -84.037603483527
    x35=27.4889357189107x_{35} = -27.4889357189107
    x36=85.6083998103219x_{36} = 85.6083998103219
    x37=96.6039740978861x_{37} = -96.6039740978861
    x38=10.2101761241668x_{38} = 10.2101761241668
    x39=13.3517687777566x_{39} = 13.3517687777566
    x40=60.4756585816035x_{40} = 60.4756585816035
    x41=3.92699081698724x_{41} = 3.92699081698724
    x42=36.9137136796801x_{42} = -36.9137136796801
    x43=52.621676947629x_{43} = -52.621676947629
    x44=32.2013246992954x_{44} = 32.2013246992954
    x45=62.0464549083984x_{45} = -62.0464549083984
    x46=58.9048622548086x_{46} = -58.9048622548086
    x47=22.776546738526x_{47} = 22.776546738526
    x48=16.4933614313464x_{48} = 16.4933614313464
    x49=41.6261026600648x_{49} = 41.6261026600648
    x50=80.8960108299372x_{50} = -80.8960108299372
    x51=54.1924732744239x_{51} = 54.1924732744239
    x52=5.49778714378214x_{52} = -5.49778714378214
    x53=101.316363078271x_{53} = 101.316363078271
    x54=49.4800842940392x_{54} = -49.4800842940392
    x55=82.4668071567321x_{55} = 82.4668071567321
    x56=65.1880475619882x_{56} = -65.1880475619882
    x57=66.7588438887831x_{57} = 66.7588438887831
    x58=76.1836218495525x_{58} = 76.1836218495525
    x59=91.8915851175014x_{59} = 91.8915851175014
    x60=87.1791961371168x_{60} = -87.1791961371168
    x61=24.3473430653209x_{61} = -24.3473430653209
    x62=63.6172512351933x_{62} = 63.6172512351933
    x63=2.35619449019234x_{63} = -2.35619449019234
    x64=38.484510006475x_{64} = 38.484510006475
    x65=44.7676953136546x_{65} = 44.7676953136546
    x66=88.7499924639117x_{66} = 88.7499924639117
    x67=40.0553063332699x_{67} = -40.0553063332699
    Данные корни
    x13=228.550865548657x_{13} = -228.550865548657
    x31=99.7455667514759x_{31} = -99.7455667514759
    x37=96.6039740978861x_{37} = -96.6039740978861
    x12=93.4623814442964x_{12} = -93.4623814442964
    x6=90.3207887907066x_{6} = -90.3207887907066
    x60=87.1791961371168x_{60} = -87.1791961371168
    x34=84.037603483527x_{34} = -84.037603483527
    x50=80.8960108299372x_{50} = -80.8960108299372
    x33=77.7544181763474x_{33} = -77.7544181763474
    x26=74.6128255227576x_{26} = -74.6128255227576
    x5=71.4712328691678x_{5} = -71.4712328691678
    x30=68.329640215578x_{30} = -68.329640215578
    x56=65.1880475619882x_{56} = -65.1880475619882
    x45=62.0464549083984x_{45} = -62.0464549083984
    x46=58.9048622548086x_{46} = -58.9048622548086
    x16=55.7632696012188x_{16} = -55.7632696012188
    x43=52.621676947629x_{43} = -52.621676947629
    x54=49.4800842940392x_{54} = -49.4800842940392
    x25=46.3384916404494x_{25} = -46.3384916404494
    x19=43.1968989868597x_{19} = -43.1968989868597
    x67=40.0553063332699x_{67} = -40.0553063332699
    x42=36.9137136796801x_{42} = -36.9137136796801
    x11=33.7721210260903x_{11} = -33.7721210260903
    x3=30.6305283725005x_{3} = -30.6305283725005
    x35=27.4889357189107x_{35} = -27.4889357189107
    x61=24.3473430653209x_{61} = -24.3473430653209
    x29=21.2057504117311x_{29} = -21.2057504117311
    x14=18.0641577581413x_{14} = -18.0641577581413
    x20=14.9225651045515x_{20} = -14.9225651045515
    x1=11.7809724509617x_{1} = -11.7809724509617
    x22=8.63937979737193x_{22} = -8.63937979737193
    x52=5.49778714378214x_{52} = -5.49778714378214
    x63=2.35619449019234x_{63} = -2.35619449019234
    x9=0.785398163397448x_{9} = 0.785398163397448
    x41=3.92699081698724x_{41} = 3.92699081698724
    x17=7.06858347057703x_{17} = 7.06858347057703
    x38=10.2101761241668x_{38} = 10.2101761241668
    x39=13.3517687777566x_{39} = 13.3517687777566
    x48=16.4933614313464x_{48} = 16.4933614313464
    x15=19.6349540849362x_{15} = 19.6349540849362
    x47=22.776546738526x_{47} = 22.776546738526
    x8=25.9181393921158x_{8} = 25.9181393921158
    x28=29.0597320457056x_{28} = 29.0597320457056
    x44=32.2013246992954x_{44} = 32.2013246992954
    x10=35.3429173528852x_{10} = 35.3429173528852
    x64=38.484510006475x_{64} = 38.484510006475
    x49=41.6261026600648x_{49} = 41.6261026600648
    x65=44.7676953136546x_{65} = 44.7676953136546
    x24=47.9092879672443x_{24} = 47.9092879672443
    x7=51.0508806208341x_{7} = 51.0508806208341
    x51=54.1924732744239x_{51} = 54.1924732744239
    x21=57.3340659280137x_{21} = 57.3340659280137
    x40=60.4756585816035x_{40} = 60.4756585816035
    x62=63.6172512351933x_{62} = 63.6172512351933
    x57=66.7588438887831x_{57} = 66.7588438887831
    x2=69.9004365423729x_{2} = 69.9004365423729
    x18=73.0420291959627x_{18} = 73.0420291959627
    x58=76.1836218495525x_{58} = 76.1836218495525
    x32=79.3252145031423x_{32} = 79.3252145031423
    x55=82.4668071567321x_{55} = 82.4668071567321
    x36=85.6083998103219x_{36} = 85.6083998103219
    x66=88.7499924639117x_{66} = 88.7499924639117
    x59=91.8915851175014x_{59} = 91.8915851175014
    x4=95.0331777710912x_{4} = 95.0331777710912
    x23=98.174770424681x_{23} = 98.174770424681
    x53=101.316363078271x_{53} = 101.316363078271
    x27=1672.11268987317x_{27} = 1672.11268987317
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0x13x_{0} \leq x_{13}
    Возьмём например точку
    x0=x13110x_{0} = x_{13} - \frac{1}{10}
    =
    228.550865548657110-228.550865548657 - \frac{1}{10}
    =
    228.650865548657-228.650865548657
    подставляем в выражение
    sin(t)cos(t)\sin{\left(t \right)} \leq \cos{\left(t \right)}
    sin(t)cos(t)\sin{\left(t \right)} \leq \cos{\left(t \right)}
    sin(t) <= cos(t)

    Тогда
    x228.550865548657x \leq -228.550865548657
    не выполняется
    значит одно из решений нашего неравенства будет при:
    x228.550865548657x99.7455667514759x \geq -228.550865548657 \wedge x \leq -99.7455667514759
             _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
            /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------•-------
           x13      x31      x37      x12      x6      x60      x34      x50      x33      x26      x5      x30      x56      x45      x46      x16      x43      x54      x25      x19      x67      x42      x11      x3      x35      x61      x29      x14      x20      x1      x22      x52      x63      x9      x41      x17      x38      x39      x48      x15      x47      x8      x28      x44      x10      x64      x49      x65      x24      x7      x51      x21      x40      x62      x57      x2      x18      x58      x32      x55      x36      x66      x59      x4      x23      x53      x27

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x228.550865548657x99.7455667514759x \geq -228.550865548657 \wedge x \leq -99.7455667514759
    x96.6039740978861x93.4623814442964x \geq -96.6039740978861 \wedge x \leq -93.4623814442964
    x90.3207887907066x87.1791961371168x \geq -90.3207887907066 \wedge x \leq -87.1791961371168
    x84.037603483527x80.8960108299372x \geq -84.037603483527 \wedge x \leq -80.8960108299372
    x77.7544181763474x74.6128255227576x \geq -77.7544181763474 \wedge x \leq -74.6128255227576
    x71.4712328691678x68.329640215578x \geq -71.4712328691678 \wedge x \leq -68.329640215578
    x65.1880475619882x62.0464549083984x \geq -65.1880475619882 \wedge x \leq -62.0464549083984
    x58.9048622548086x55.7632696012188x \geq -58.9048622548086 \wedge x \leq -55.7632696012188
    x52.621676947629x49.4800842940392x \geq -52.621676947629 \wedge x \leq -49.4800842940392
    x46.3384916404494x43.1968989868597x \geq -46.3384916404494 \wedge x \leq -43.1968989868597
    x40.0553063332699x36.9137136796801x \geq -40.0553063332699 \wedge x \leq -36.9137136796801
    x33.7721210260903x30.6305283725005x \geq -33.7721210260903 \wedge x \leq -30.6305283725005
    x27.4889357189107x24.3473430653209x \geq -27.4889357189107 \wedge x \leq -24.3473430653209
    x21.2057504117311x18.0641577581413x \geq -21.2057504117311 \wedge x \leq -18.0641577581413
    x14.9225651045515x11.7809724509617x \geq -14.9225651045515 \wedge x \leq -11.7809724509617
    x8.63937979737193x5.49778714378214x \geq -8.63937979737193 \wedge x \leq -5.49778714378214
    x2.35619449019234x0.785398163397448x \geq -2.35619449019234 \wedge x \leq 0.785398163397448
    x3.92699081698724x7.06858347057703x \geq 3.92699081698724 \wedge x \leq 7.06858347057703
    x10.2101761241668x13.3517687777566x \geq 10.2101761241668 \wedge x \leq 13.3517687777566
    x16.4933614313464x19.6349540849362x \geq 16.4933614313464 \wedge x \leq 19.6349540849362
    x22.776546738526x25.9181393921158x \geq 22.776546738526 \wedge x \leq 25.9181393921158
    x29.0597320457056x32.2013246992954x \geq 29.0597320457056 \wedge x \leq 32.2013246992954
    x35.3429173528852x38.484510006475x \geq 35.3429173528852 \wedge x \leq 38.484510006475
    x41.6261026600648x44.7676953136546x \geq 41.6261026600648 \wedge x \leq 44.7676953136546
    x47.9092879672443x51.0508806208341x \geq 47.9092879672443 \wedge x \leq 51.0508806208341
    x54.1924732744239x57.3340659280137x \geq 54.1924732744239 \wedge x \leq 57.3340659280137
    x60.4756585816035x63.6172512351933x \geq 60.4756585816035 \wedge x \leq 63.6172512351933
    x66.7588438887831x69.9004365423729x \geq 66.7588438887831 \wedge x \leq 69.9004365423729
    x73.0420291959627x76.1836218495525x \geq 73.0420291959627 \wedge x \leq 76.1836218495525
    x79.3252145031423x82.4668071567321x \geq 79.3252145031423 \wedge x \leq 82.4668071567321
    x85.6083998103219x88.7499924639117x \geq 85.6083998103219 \wedge x \leq 88.7499924639117
    x91.8915851175014x95.0331777710912x \geq 91.8915851175014 \wedge x \leq 95.0331777710912
    x98.174770424681x101.316363078271x \geq 98.174770424681 \wedge x \leq 101.316363078271
    x1672.11268987317x \geq 1672.11268987317
    Быстрый ответ [src]
      /   /             pi\     /5*pi               \\
    Or|And|0 <= t, t <= --|, And|---- <= t, t < 2*pi||
      \   \             4 /     \ 4                 //
    (0ttπ4)(5π4tt<2π)\left(0 \leq t \wedge t \leq \frac{\pi}{4}\right) \vee \left(\frac{5 \pi}{4} \leq t \wedge t < 2 \pi\right)
    Быстрый ответ 2 [src]
        pi     5*pi       
    [0, --] U [----, 2*pi)
        4       4         
    x in [0,π4][5π4,2π)x\ in\ \left[0, \frac{\pi}{4}\right] \cup \left[\frac{5 \pi}{4}, 2 \pi\right)