sin(t)<0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: sin(t)<0 (множество решений неравенства)

    Решение

    Вы ввели [src]
    sin(t) < 0
    sin(t)<0\sin{\left (t \right )} < 0
    Подробное решение
    Дано неравенство:
    sin(t)<0\sin{\left (t \right )} < 0
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    sin(t)=0\sin{\left (t \right )} = 0
    Решаем:
    x1=94.2477796077x_{1} = -94.2477796077
    x2=31.4159265359x_{2} = 31.4159265359
    x3=81.6814089933x_{3} = 81.6814089933
    x4=84.8230016469x_{4} = 84.8230016469
    x5=53.407075111x_{5} = -53.407075111
    x6=65.9734457254x_{6} = 65.9734457254
    x7=3.14159265359x_{7} = 3.14159265359
    x8=15.7079632679x_{8} = 15.7079632679
    x9=100.530964915x_{9} = 100.530964915
    x10=50.2654824574x_{10} = 50.2654824574
    x11=3.14159265359x_{11} = -3.14159265359
    x12=40.8407044967x_{12} = 40.8407044967
    x13=59.6902604182x_{13} = -59.6902604182
    x14=97.3893722613x_{14} = 97.3893722613
    x15=78.5398163397x_{15} = 78.5398163397
    x16=25.1327412287x_{16} = -25.1327412287
    x17=43.9822971503x_{17} = -43.9822971503
    x18=25.1327412287x_{18} = 25.1327412287
    x19=81.6814089933x_{19} = -81.6814089933
    x20=91.1061869541x_{20} = -91.1061869541
    x21=87.9645943005x_{21} = 87.9645943005
    x22=69.115038379x_{22} = 69.115038379
    x23=34.5575191895x_{23} = -34.5575191895
    x24=28.2743338823x_{24} = 28.2743338823
    x25=31.4159265359x_{25} = -31.4159265359
    x26=37.6991118431x_{26} = 37.6991118431
    x27=28.2743338823x_{27} = -28.2743338823
    x28=72.2566310326x_{28} = 72.2566310326
    x29=56.5486677646x_{29} = 56.5486677646
    x30=75.3982236862x_{30} = -75.3982236862
    x31=69.115038379x_{31} = -69.115038379
    x32=6.28318530718x_{32} = -6.28318530718
    x33=9.42477796077x_{33} = -9.42477796077
    x34=6.28318530718x_{34} = 6.28318530718
    x35=75.3982236862x_{35} = 75.3982236862
    x36=65.9734457254x_{36} = -65.9734457254
    x37=87.9645943005x_{37} = -87.9645943005
    x38=72.2566310326x_{38} = -72.2566310326
    x39=18.8495559215x_{39} = 18.8495559215
    x40=267.035375555x_{40} = -267.035375555
    x41=84.8230016469x_{41} = -84.8230016469
    x42=9.42477796077x_{42} = 9.42477796077
    x43=50.2654824574x_{43} = -50.2654824574
    x44=56.5486677646x_{44} = -56.5486677646
    x45=232.477856366x_{45} = -232.477856366
    x46=2642.07942167x_{46} = -2642.07942167
    x47=91.1061869541x_{47} = 91.1061869541
    x48=59.6902604182x_{48} = 59.6902604182
    x49=47.1238898038x_{49} = -47.1238898038
    x50=12.5663706144x_{50} = 12.5663706144
    x51=62.8318530718x_{51} = -62.8318530718
    x52=62.8318530718x_{52} = 62.8318530718
    x53=18.8495559215x_{53} = -18.8495559215
    x54=12.5663706144x_{54} = -12.5663706144
    x55=37.6991118431x_{55} = -37.6991118431
    x56=97.3893722613x_{56} = -97.3893722613
    x57=94.2477796077x_{57} = 94.2477796077
    x58=34.5575191895x_{58} = 34.5575191895
    x59=21.9911485751x_{59} = -21.9911485751
    x60=21.9911485751x_{60} = 21.9911485751
    x61=100.530964915x_{61} = -100.530964915
    x62=53.407075111x_{62} = 53.407075111
    x63=113.097335529x_{63} = -113.097335529
    x64=78.5398163397x_{64} = -78.5398163397
    x65=0x_{65} = 0
    x66=43.9822971503x_{66} = 43.9822971503
    x67=40.8407044967x_{67} = -40.8407044967
    x68=15.7079632679x_{68} = -15.7079632679
    x69=47.1238898038x_{69} = 47.1238898038
    x1=94.2477796077x_{1} = -94.2477796077
    x2=31.4159265359x_{2} = 31.4159265359
    x3=81.6814089933x_{3} = 81.6814089933
    x4=84.8230016469x_{4} = 84.8230016469
    x5=53.407075111x_{5} = -53.407075111
    x6=65.9734457254x_{6} = 65.9734457254
    x7=3.14159265359x_{7} = 3.14159265359
    x8=15.7079632679x_{8} = 15.7079632679
    x9=100.530964915x_{9} = 100.530964915
    x10=50.2654824574x_{10} = 50.2654824574
    x11=3.14159265359x_{11} = -3.14159265359
    x12=40.8407044967x_{12} = 40.8407044967
    x13=59.6902604182x_{13} = -59.6902604182
    x14=97.3893722613x_{14} = 97.3893722613
    x15=78.5398163397x_{15} = 78.5398163397
    x16=25.1327412287x_{16} = -25.1327412287
    x17=43.9822971503x_{17} = -43.9822971503
    x18=25.1327412287x_{18} = 25.1327412287
    x19=81.6814089933x_{19} = -81.6814089933
    x20=91.1061869541x_{20} = -91.1061869541
    x21=87.9645943005x_{21} = 87.9645943005
    x22=69.115038379x_{22} = 69.115038379
    x23=34.5575191895x_{23} = -34.5575191895
    x24=28.2743338823x_{24} = 28.2743338823
    x25=31.4159265359x_{25} = -31.4159265359
    x26=37.6991118431x_{26} = 37.6991118431
    x27=28.2743338823x_{27} = -28.2743338823
    x28=72.2566310326x_{28} = 72.2566310326
    x29=56.5486677646x_{29} = 56.5486677646
    x30=75.3982236862x_{30} = -75.3982236862
    x31=69.115038379x_{31} = -69.115038379
    x32=6.28318530718x_{32} = -6.28318530718
    x33=9.42477796077x_{33} = -9.42477796077
    x34=6.28318530718x_{34} = 6.28318530718
    x35=75.3982236862x_{35} = 75.3982236862
    x36=65.9734457254x_{36} = -65.9734457254
    x37=87.9645943005x_{37} = -87.9645943005
    x38=72.2566310326x_{38} = -72.2566310326
    x39=18.8495559215x_{39} = 18.8495559215
    x40=267.035375555x_{40} = -267.035375555
    x41=84.8230016469x_{41} = -84.8230016469
    x42=9.42477796077x_{42} = 9.42477796077
    x43=50.2654824574x_{43} = -50.2654824574
    x44=56.5486677646x_{44} = -56.5486677646
    x45=232.477856366x_{45} = -232.477856366
    x46=2642.07942167x_{46} = -2642.07942167
    x47=91.1061869541x_{47} = 91.1061869541
    x48=59.6902604182x_{48} = 59.6902604182
    x49=47.1238898038x_{49} = -47.1238898038
    x50=12.5663706144x_{50} = 12.5663706144
    x51=62.8318530718x_{51} = -62.8318530718
    x52=62.8318530718x_{52} = 62.8318530718
    x53=18.8495559215x_{53} = -18.8495559215
    x54=12.5663706144x_{54} = -12.5663706144
    x55=37.6991118431x_{55} = -37.6991118431
    x56=97.3893722613x_{56} = -97.3893722613
    x57=94.2477796077x_{57} = 94.2477796077
    x58=34.5575191895x_{58} = 34.5575191895
    x59=21.9911485751x_{59} = -21.9911485751
    x60=21.9911485751x_{60} = 21.9911485751
    x61=100.530964915x_{61} = -100.530964915
    x62=53.407075111x_{62} = 53.407075111
    x63=113.097335529x_{63} = -113.097335529
    x64=78.5398163397x_{64} = -78.5398163397
    x65=0x_{65} = 0
    x66=43.9822971503x_{66} = 43.9822971503
    x67=40.8407044967x_{67} = -40.8407044967
    x68=15.7079632679x_{68} = -15.7079632679
    x69=47.1238898038x_{69} = 47.1238898038
    Данные корни
    x46=2642.07942167x_{46} = -2642.07942167
    x40=267.035375555x_{40} = -267.035375555
    x45=232.477856366x_{45} = -232.477856366
    x63=113.097335529x_{63} = -113.097335529
    x61=100.530964915x_{61} = -100.530964915
    x56=97.3893722613x_{56} = -97.3893722613
    x1=94.2477796077x_{1} = -94.2477796077
    x20=91.1061869541x_{20} = -91.1061869541
    x37=87.9645943005x_{37} = -87.9645943005
    x41=84.8230016469x_{41} = -84.8230016469
    x19=81.6814089933x_{19} = -81.6814089933
    x64=78.5398163397x_{64} = -78.5398163397
    x30=75.3982236862x_{30} = -75.3982236862
    x38=72.2566310326x_{38} = -72.2566310326
    x31=69.115038379x_{31} = -69.115038379
    x36=65.9734457254x_{36} = -65.9734457254
    x51=62.8318530718x_{51} = -62.8318530718
    x13=59.6902604182x_{13} = -59.6902604182
    x44=56.5486677646x_{44} = -56.5486677646
    x5=53.407075111x_{5} = -53.407075111
    x43=50.2654824574x_{43} = -50.2654824574
    x49=47.1238898038x_{49} = -47.1238898038
    x17=43.9822971503x_{17} = -43.9822971503
    x67=40.8407044967x_{67} = -40.8407044967
    x55=37.6991118431x_{55} = -37.6991118431
    x23=34.5575191895x_{23} = -34.5575191895
    x25=31.4159265359x_{25} = -31.4159265359
    x27=28.2743338823x_{27} = -28.2743338823
    x16=25.1327412287x_{16} = -25.1327412287
    x59=21.9911485751x_{59} = -21.9911485751
    x53=18.8495559215x_{53} = -18.8495559215
    x68=15.7079632679x_{68} = -15.7079632679
    x54=12.5663706144x_{54} = -12.5663706144
    x33=9.42477796077x_{33} = -9.42477796077
    x32=6.28318530718x_{32} = -6.28318530718
    x11=3.14159265359x_{11} = -3.14159265359
    x65=0x_{65} = 0
    x7=3.14159265359x_{7} = 3.14159265359
    x34=6.28318530718x_{34} = 6.28318530718
    x42=9.42477796077x_{42} = 9.42477796077
    x50=12.5663706144x_{50} = 12.5663706144
    x8=15.7079632679x_{8} = 15.7079632679
    x39=18.8495559215x_{39} = 18.8495559215
    x60=21.9911485751x_{60} = 21.9911485751
    x18=25.1327412287x_{18} = 25.1327412287
    x24=28.2743338823x_{24} = 28.2743338823
    x2=31.4159265359x_{2} = 31.4159265359
    x58=34.5575191895x_{58} = 34.5575191895
    x26=37.6991118431x_{26} = 37.6991118431
    x12=40.8407044967x_{12} = 40.8407044967
    x66=43.9822971503x_{66} = 43.9822971503
    x69=47.1238898038x_{69} = 47.1238898038
    x10=50.2654824574x_{10} = 50.2654824574
    x62=53.407075111x_{62} = 53.407075111
    x29=56.5486677646x_{29} = 56.5486677646
    x48=59.6902604182x_{48} = 59.6902604182
    x52=62.8318530718x_{52} = 62.8318530718
    x6=65.9734457254x_{6} = 65.9734457254
    x22=69.115038379x_{22} = 69.115038379
    x28=72.2566310326x_{28} = 72.2566310326
    x35=75.3982236862x_{35} = 75.3982236862
    x15=78.5398163397x_{15} = 78.5398163397
    x3=81.6814089933x_{3} = 81.6814089933
    x4=84.8230016469x_{4} = 84.8230016469
    x21=87.9645943005x_{21} = 87.9645943005
    x47=91.1061869541x_{47} = 91.1061869541
    x57=94.2477796077x_{57} = 94.2477796077
    x14=97.3893722613x_{14} = 97.3893722613
    x9=100.530964915x_{9} = 100.530964915
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x46x_{0} < x_{46}
    Возьмём например точку
    x0=x46110x_{0} = x_{46} - \frac{1}{10}
    =
    2642.17942167-2642.17942167
    =
    2642.17942167-2642.17942167
    подставляем в выражение
    sin(t)<0\sin{\left (t \right )} < 0
    sin(t)<0\sin{\left (t \right )} < 0
    sin(t) < 0

    Тогда
    x<2642.07942167x < -2642.07942167
    не выполняется
    значит одно из решений нашего неравенства будет при:
    x>2642.07942167x<267.035375555x > -2642.07942167 \wedge x < -267.035375555
             _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
            /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x46      x40      x45      x63      x61      x56      x1      x20      x37      x41      x19      x64      x30      x38      x31      x36      x51      x13      x44      x5      x43      x49      x17      x67      x55      x23      x25      x27      x16      x59      x53      x68      x54      x33      x32      x11      x65      x7      x34      x42      x50      x8      x39      x60      x18      x24      x2      x58      x26      x12      x66      x69      x10      x62      x29      x48      x52      x6      x22      x28      x35      x15      x3      x4      x21      x47      x57      x14      x9

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x>2642.07942167x<267.035375555x > -2642.07942167 \wedge x < -267.035375555
    x>232.477856366x<113.097335529x > -232.477856366 \wedge x < -113.097335529
    x>100.530964915x<97.3893722613x > -100.530964915 \wedge x < -97.3893722613
    x>94.2477796077x<91.1061869541x > -94.2477796077 \wedge x < -91.1061869541
    x>87.9645943005x<84.8230016469x > -87.9645943005 \wedge x < -84.8230016469
    x>81.6814089933x<78.5398163397x > -81.6814089933 \wedge x < -78.5398163397
    x>75.3982236862x<72.2566310326x > -75.3982236862 \wedge x < -72.2566310326
    x>69.115038379x<65.9734457254x > -69.115038379 \wedge x < -65.9734457254
    x>62.8318530718x<59.6902604182x > -62.8318530718 \wedge x < -59.6902604182
    x>56.5486677646x<53.407075111x > -56.5486677646 \wedge x < -53.407075111
    x>50.2654824574x<47.1238898038x > -50.2654824574 \wedge x < -47.1238898038
    x>43.9822971503x<40.8407044967x > -43.9822971503 \wedge x < -40.8407044967
    x>37.6991118431x<34.5575191895x > -37.6991118431 \wedge x < -34.5575191895
    x>31.4159265359x<28.2743338823x > -31.4159265359 \wedge x < -28.2743338823
    x>25.1327412287x<21.9911485751x > -25.1327412287 \wedge x < -21.9911485751
    x>18.8495559215x<15.7079632679x > -18.8495559215 \wedge x < -15.7079632679
    x>12.5663706144x<9.42477796077x > -12.5663706144 \wedge x < -9.42477796077
    x>6.28318530718x<3.14159265359x > -6.28318530718 \wedge x < -3.14159265359
    x>0x<3.14159265359x > 0 \wedge x < 3.14159265359
    x>6.28318530718x<9.42477796077x > 6.28318530718 \wedge x < 9.42477796077
    x>12.5663706144x<15.7079632679x > 12.5663706144 \wedge x < 15.7079632679
    x>18.8495559215x<21.9911485751x > 18.8495559215 \wedge x < 21.9911485751
    x>25.1327412287x<28.2743338823x > 25.1327412287 \wedge x < 28.2743338823
    x>31.4159265359x<34.5575191895x > 31.4159265359 \wedge x < 34.5575191895
    x>37.6991118431x<40.8407044967x > 37.6991118431 \wedge x < 40.8407044967
    x>43.9822971503x<47.1238898038x > 43.9822971503 \wedge x < 47.1238898038
    x>50.2654824574x<53.407075111x > 50.2654824574 \wedge x < 53.407075111
    x>56.5486677646x<59.6902604182x > 56.5486677646 \wedge x < 59.6902604182
    x>62.8318530718x<65.9734457254x > 62.8318530718 \wedge x < 65.9734457254
    x>69.115038379x<72.2566310326x > 69.115038379 \wedge x < 72.2566310326
    x>75.3982236862x<78.5398163397x > 75.3982236862 \wedge x < 78.5398163397
    x>81.6814089933x<84.8230016469x > 81.6814089933 \wedge x < 84.8230016469
    x>87.9645943005x<91.1061869541x > 87.9645943005 \wedge x < 91.1061869541
    x>94.2477796077x<97.3893722613x > 94.2477796077 \wedge x < 97.3893722613
    x>100.530964915x > 100.530964915
    Быстрый ответ [src]
    And(-oo < t, t < 0)
    <tt<0-\infty < t \wedge t < 0
    Быстрый ответ 2 [src]
    (-oo, 0)
    x(,0)x \in \left(-\infty, 0\right)