3^x>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 3^x>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
     x    
    3  > 0
    3x>03^{x} > 0
    Подробное решение
    Дано неравенство:
    3x>03^{x} > 0
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    3x=03^{x} = 0
    Решаем:
    x1=108.985557061373x_{1} = -108.985557061373
    x2=28.9855570613729x_{2} = -28.9855570613729
    x3=56.9855570613729x_{3} = -56.9855570613729
    x4=48.9855570613729x_{4} = -48.9855570613729
    x5=114.985557061373x_{5} = -114.985557061373
    x6=54.9855570613729x_{6} = -54.9855570613729
    x7=112.985557061373x_{7} = -112.985557061373
    x8=104.985557061373x_{8} = -104.985557061373
    x9=68.9855570613729x_{9} = -68.9855570613729
    x10=96.9855570613729x_{10} = -96.9855570613729
    x11=116.985557061373x_{11} = -116.985557061373
    x12=66.9855570613729x_{12} = -66.9855570613729
    x13=40.9855570613729x_{13} = -40.9855570613729
    x14=82.9855570613729x_{14} = -82.9855570613729
    x15=86.9855570613729x_{15} = -86.9855570613729
    x16=88.9855570613729x_{16} = -88.9855570613729
    x17=76.9855570613729x_{17} = -76.9855570613729
    x18=46.9855570613729x_{18} = -46.9855570613729
    x19=106.985557061373x_{19} = -106.985557061373
    x20=80.9855570613729x_{20} = -80.9855570613729
    x21=64.9855570613729x_{21} = -64.9855570613729
    x22=74.9855570613729x_{22} = -74.9855570613729
    x23=84.9855570613729x_{23} = -84.9855570613729
    x24=58.9855570613729x_{24} = -58.9855570613729
    x25=38.9855570613729x_{25} = -38.9855570613729
    x26=78.9855570613729x_{26} = -78.9855570613729
    x27=34.9855570613729x_{27} = -34.9855570613729
    x28=32.9855570613729x_{28} = -32.9855570613729
    x29=26.9855570613729x_{29} = -26.9855570613729
    x30=90.9855570613729x_{30} = -90.9855570613729
    x31=98.9855570613729x_{31} = -98.9855570613729
    x32=100.985557061373x_{32} = -100.985557061373
    x33=24.9855570613729x_{33} = -24.9855570613729
    x34=62.9855570613729x_{34} = -62.9855570613729
    x35=42.9855570613729x_{35} = -42.9855570613729
    x36=60.9855570613729x_{36} = -60.9855570613729
    x37=102.985557061373x_{37} = -102.985557061373
    x38=118.985557061373x_{38} = -118.985557061373
    x39=92.9855570613729x_{39} = -92.9855570613729
    x40=50.9855570613729x_{40} = -50.9855570613729
    x41=44.9855570613729x_{41} = -44.9855570613729
    x42=36.9855570613729x_{42} = -36.9855570613729
    x43=52.9855570613729x_{43} = -52.9855570613729
    x44=110.985557061373x_{44} = -110.985557061373
    x45=94.9855570613729x_{45} = -94.9855570613729
    x46=70.9855570613729x_{46} = -70.9855570613729
    x47=72.9855570613729x_{47} = -72.9855570613729
    x48=30.9855570613729x_{48} = -30.9855570613729
    x1=108.985557061373x_{1} = -108.985557061373
    x2=28.9855570613729x_{2} = -28.9855570613729
    x3=56.9855570613729x_{3} = -56.9855570613729
    x4=48.9855570613729x_{4} = -48.9855570613729
    x5=114.985557061373x_{5} = -114.985557061373
    x6=54.9855570613729x_{6} = -54.9855570613729
    x7=112.985557061373x_{7} = -112.985557061373
    x8=104.985557061373x_{8} = -104.985557061373
    x9=68.9855570613729x_{9} = -68.9855570613729
    x10=96.9855570613729x_{10} = -96.9855570613729
    x11=116.985557061373x_{11} = -116.985557061373
    x12=66.9855570613729x_{12} = -66.9855570613729
    x13=40.9855570613729x_{13} = -40.9855570613729
    x14=82.9855570613729x_{14} = -82.9855570613729
    x15=86.9855570613729x_{15} = -86.9855570613729
    x16=88.9855570613729x_{16} = -88.9855570613729
    x17=76.9855570613729x_{17} = -76.9855570613729
    x18=46.9855570613729x_{18} = -46.9855570613729
    x19=106.985557061373x_{19} = -106.985557061373
    x20=80.9855570613729x_{20} = -80.9855570613729
    x21=64.9855570613729x_{21} = -64.9855570613729
    x22=74.9855570613729x_{22} = -74.9855570613729
    x23=84.9855570613729x_{23} = -84.9855570613729
    x24=58.9855570613729x_{24} = -58.9855570613729
    x25=38.9855570613729x_{25} = -38.9855570613729
    x26=78.9855570613729x_{26} = -78.9855570613729
    x27=34.9855570613729x_{27} = -34.9855570613729
    x28=32.9855570613729x_{28} = -32.9855570613729
    x29=26.9855570613729x_{29} = -26.9855570613729
    x30=90.9855570613729x_{30} = -90.9855570613729
    x31=98.9855570613729x_{31} = -98.9855570613729
    x32=100.985557061373x_{32} = -100.985557061373
    x33=24.9855570613729x_{33} = -24.9855570613729
    x34=62.9855570613729x_{34} = -62.9855570613729
    x35=42.9855570613729x_{35} = -42.9855570613729
    x36=60.9855570613729x_{36} = -60.9855570613729
    x37=102.985557061373x_{37} = -102.985557061373
    x38=118.985557061373x_{38} = -118.985557061373
    x39=92.9855570613729x_{39} = -92.9855570613729
    x40=50.9855570613729x_{40} = -50.9855570613729
    x41=44.9855570613729x_{41} = -44.9855570613729
    x42=36.9855570613729x_{42} = -36.9855570613729
    x43=52.9855570613729x_{43} = -52.9855570613729
    x44=110.985557061373x_{44} = -110.985557061373
    x45=94.9855570613729x_{45} = -94.9855570613729
    x46=70.9855570613729x_{46} = -70.9855570613729
    x47=72.9855570613729x_{47} = -72.9855570613729
    x48=30.9855570613729x_{48} = -30.9855570613729
    Данные корни
    x38=118.985557061373x_{38} = -118.985557061373
    x11=116.985557061373x_{11} = -116.985557061373
    x5=114.985557061373x_{5} = -114.985557061373
    x7=112.985557061373x_{7} = -112.985557061373
    x44=110.985557061373x_{44} = -110.985557061373
    x1=108.985557061373x_{1} = -108.985557061373
    x19=106.985557061373x_{19} = -106.985557061373
    x8=104.985557061373x_{8} = -104.985557061373
    x37=102.985557061373x_{37} = -102.985557061373
    x32=100.985557061373x_{32} = -100.985557061373
    x31=98.9855570613729x_{31} = -98.9855570613729
    x10=96.9855570613729x_{10} = -96.9855570613729
    x45=94.9855570613729x_{45} = -94.9855570613729
    x39=92.9855570613729x_{39} = -92.9855570613729
    x30=90.9855570613729x_{30} = -90.9855570613729
    x16=88.9855570613729x_{16} = -88.9855570613729
    x15=86.9855570613729x_{15} = -86.9855570613729
    x23=84.9855570613729x_{23} = -84.9855570613729
    x14=82.9855570613729x_{14} = -82.9855570613729
    x20=80.9855570613729x_{20} = -80.9855570613729
    x26=78.9855570613729x_{26} = -78.9855570613729
    x17=76.9855570613729x_{17} = -76.9855570613729
    x22=74.9855570613729x_{22} = -74.9855570613729
    x47=72.9855570613729x_{47} = -72.9855570613729
    x46=70.9855570613729x_{46} = -70.9855570613729
    x9=68.9855570613729x_{9} = -68.9855570613729
    x12=66.9855570613729x_{12} = -66.9855570613729
    x21=64.9855570613729x_{21} = -64.9855570613729
    x34=62.9855570613729x_{34} = -62.9855570613729
    x36=60.9855570613729x_{36} = -60.9855570613729
    x24=58.9855570613729x_{24} = -58.9855570613729
    x3=56.9855570613729x_{3} = -56.9855570613729
    x6=54.9855570613729x_{6} = -54.9855570613729
    x43=52.9855570613729x_{43} = -52.9855570613729
    x40=50.9855570613729x_{40} = -50.9855570613729
    x4=48.9855570613729x_{4} = -48.9855570613729
    x18=46.9855570613729x_{18} = -46.9855570613729
    x41=44.9855570613729x_{41} = -44.9855570613729
    x35=42.9855570613729x_{35} = -42.9855570613729
    x13=40.9855570613729x_{13} = -40.9855570613729
    x25=38.9855570613729x_{25} = -38.9855570613729
    x42=36.9855570613729x_{42} = -36.9855570613729
    x27=34.9855570613729x_{27} = -34.9855570613729
    x28=32.9855570613729x_{28} = -32.9855570613729
    x48=30.9855570613729x_{48} = -30.9855570613729
    x2=28.9855570613729x_{2} = -28.9855570613729
    x29=26.9855570613729x_{29} = -26.9855570613729
    x33=24.9855570613729x_{33} = -24.9855570613729
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x38x_{0} < x_{38}
    Возьмём например точку
    x0=x38110x_{0} = x_{38} - \frac{1}{10}
    =
    118.985557061373110-118.985557061373 - \frac{1}{10}
    =
    119.085557061373-119.085557061373
    подставляем в выражение
    3x>03^{x} > 0
    3119.085557061373>03^{-119.085557061373} > 0
    1.51967107003759e-57 > 0

    значит одно из решений нашего неравенства будет при:
    x<118.985557061373x < -118.985557061373
     _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____          
          \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x_38      x_11      x_5      x_7      x_44      x_1      x_19      x_8      x_37      x_32      x_31      x_10      x_45      x_39      x_30      x_16      x_15      x_23      x_14      x_20      x_26      x_17      x_22      x_47      x_46      x_9      x_12      x_21      x_34      x_36      x_24      x_3      x_6      x_43      x_40      x_4      x_18      x_41      x_35      x_13      x_25      x_42      x_27      x_28      x_48      x_2      x_29      x_33

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x<118.985557061373x < -118.985557061373
    x>116.985557061373x<114.985557061373x > -116.985557061373 \wedge x < -114.985557061373
    x>112.985557061373x<110.985557061373x > -112.985557061373 \wedge x < -110.985557061373
    x>108.985557061373x<106.985557061373x > -108.985557061373 \wedge x < -106.985557061373
    x>104.985557061373x<102.985557061373x > -104.985557061373 \wedge x < -102.985557061373
    x>100.985557061373x<98.9855570613729x > -100.985557061373 \wedge x < -98.9855570613729
    x>96.9855570613729x<94.9855570613729x > -96.9855570613729 \wedge x < -94.9855570613729
    x>92.9855570613729x<90.9855570613729x > -92.9855570613729 \wedge x < -90.9855570613729
    x>88.9855570613729x<86.9855570613729x > -88.9855570613729 \wedge x < -86.9855570613729
    x>84.9855570613729x<82.9855570613729x > -84.9855570613729 \wedge x < -82.9855570613729
    x>80.9855570613729x<78.9855570613729x > -80.9855570613729 \wedge x < -78.9855570613729
    x>76.9855570613729x<74.9855570613729x > -76.9855570613729 \wedge x < -74.9855570613729
    x>72.9855570613729x<70.9855570613729x > -72.9855570613729 \wedge x < -70.9855570613729
    x>68.9855570613729x<66.9855570613729x > -68.9855570613729 \wedge x < -66.9855570613729
    x>64.9855570613729x<62.9855570613729x > -64.9855570613729 \wedge x < -62.9855570613729
    x>60.9855570613729x<58.9855570613729x > -60.9855570613729 \wedge x < -58.9855570613729
    x>56.9855570613729x<54.9855570613729x > -56.9855570613729 \wedge x < -54.9855570613729
    x>52.9855570613729x<50.9855570613729x > -52.9855570613729 \wedge x < -50.9855570613729
    x>48.9855570613729x<46.9855570613729x > -48.9855570613729 \wedge x < -46.9855570613729
    x>44.9855570613729x<42.9855570613729x > -44.9855570613729 \wedge x < -42.9855570613729
    x>40.9855570613729x<38.9855570613729x > -40.9855570613729 \wedge x < -38.9855570613729
    x>36.9855570613729x<34.9855570613729x > -36.9855570613729 \wedge x < -34.9855570613729
    x>32.9855570613729x<30.9855570613729x > -32.9855570613729 \wedge x < -30.9855570613729
    x>28.9855570613729x<26.9855570613729x > -28.9855570613729 \wedge x < -26.9855570613729
    x>24.9855570613729x > -24.9855570613729
    Решение неравенства на графике
    501234-9-8-7-6-5-4-3-2-1-10020
    Быстрый ответ [src]
    -oo < x
    <x-\infty < x
    Быстрый ответ 2 [src]
    (-oo, oo)
    x in (,)x\ in\ \left(-\infty, \infty\right)
    График
    3^x>0 (неравенство) /media/krcore-image-pods/hash/inequation/c/a1/ef13f6ab5942e7ef571e93d1c9743.png