Решите неравенство 30>2*u+9 (30 больше 2 умножить на u плюс 9) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

30>2*u+9 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 30>2*u+9 (множество решений неравенства)

    Решение

    Вы ввели [src]
    30 > 2*u + 9
    $$30 > 2 u + 9$$
    Подробное решение
    Дано неравенство:
    $$30 > 2 u + 9$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$30 = 2 u + 9$$
    Решаем:
    $$x_{1} = 10.5$$
    $$x_{1} = 10.5$$
    Данные корни
    $$x_{1} = 10.5$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$10.4$$
    =
    $$10.4$$
    подставляем в выражение
    $$30 > 2 u + 9$$
    $$30 > 2 u + 9$$
    30 > 9 + 2*u

    Тогда
    $$x < 10.5$$
    не выполняется
    значит решение неравенства будет при:
    $$x > 10.5$$
             _____  
            /
    -------ο-------
           x1
    Быстрый ответ [src]
    And(-oo < u, u < 21/2)
    $$-\infty < u \wedge u < \frac{21}{2}$$
    Быстрый ответ 2 [src]
    (-oo, 21/2)
    $$x \in \left(-\infty, \frac{21}{2}\right)$$