Решите неравенство (x-2)/(x+3)>0 ((х минус 2) делить на (х плюс 3) больше 0) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

(x-2)/(x+3)>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: (x-2)/(x+3)>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
    x - 2    
    ----- > 0
    x + 3    
    $$\frac{x - 2}{x + 3} > 0$$
    Подробное решение
    Дано неравенство:
    $$\frac{x - 2}{x + 3} > 0$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$\frac{x - 2}{x + 3} = 0$$
    Решаем:
    Дано уравнение:
    $$\frac{x - 2}{x + 3} = 0$$
    Домножим обе части ур-ния на знаменатель 3 + x
    получим:
    $$x - 2 = 0$$
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = 2$$
    $$x_{1} = 2$$
    $$x_{1} = 2$$
    Данные корни
    $$x_{1} = 2$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$\frac{19}{10}$$
    =
    $$\frac{19}{10}$$
    подставляем в выражение
    $$\frac{x - 2}{x + 3} > 0$$
    $$\frac{-2 + \frac{19}{10}}{\frac{19}{10} + 3} > 0$$
    -1/49 > 0

    Тогда
    $$x < 2$$
    не выполняется
    значит решение неравенства будет при:
    $$x > 2$$
             _____  
            /
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    Or(And(-oo < x, x < -3), And(2 < x, x < oo))
    $$\left(-\infty < x \wedge x < -3\right) \vee \left(2 < x \wedge x < \infty\right)$$
    Быстрый ответ 2 [src]
    (-oo, -3) U (2, oo)
    $$x \in \left(-\infty, -3\right) \cup \left(2, \infty\right)$$