Решите неравенство x^2-5+6>0 (х в квадрате минус 5 плюс 6 больше 0) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

x^2-5+6>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: x^2-5+6>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
     2            
    x  - 5 + 6 > 0
    $$x^{2} - 5 + 6 > 0$$
    Подробное решение
    Дано неравенство:
    $$x^{2} - 5 + 6 > 0$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$x^{2} - 5 + 6 = 0$$
    Решаем:
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = 0$$
    $$c = 1$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (1) * (1) = -4

    Т.к. D < 0, то уравнение
    не имеет вещественных корней,
    но комплексные корни имеются.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = i$$
    Упростить
    $$x_{2} = - i$$
    Упростить
    $$x_{1} = i$$
    $$x_{2} = - i$$
    Исключаем комплексные решения:
    Данное ур-ние не имеет решений,
    значит данное неравенство выполняется всегда или не выполняется никогда
    проверим
    подставляем произвольную точку, например
    x0 = 0

    $$\left(-1\right) 5 + 0^{2} + 6 > 0$$
    1 > 0

    зн. неравенство выполняется всегда
    Решение неравенства на графике
    Быстрый ответ
    Данное неравенство верно выполняется всегда
    График
    x^2-5+6>0 (неравенство) /media/krcore-image-pods/hash/inequation/e/61/16b4eee90617f4e07c211f56b7e7b.png