Решите неравенство x^3+1>0 (х в кубе плюс 1 больше 0) - Укажите множество решений неравенства подробно по-шагам. [Есть ответ!]

x^3+1>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: x^3+1>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
     3        
    x  + 1 > 0
    $$x^{3} + 1 > 0$$
    Подробное решение
    Дано неравенство:
    $$x^{3} + 1 > 0$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$x^{3} + 1 = 0$$
    Решаем:
    Дано уравнение
    $$x^{3} + 1 = 0$$
    Т.к. степень в ур-нии равна = 3 - не содержит чётного числа в числителе, то
    ур-ние будет иметь один действительный корень.
    Извлечём корень 3-й степени из обеих частей ур-ния:
    Получим:
    $$\sqrt[3]{\left(1 x + 0\right)^{3}} = \sqrt[3]{-1}$$
    или
    $$x = \sqrt[3]{-1}$$
    Раскрываем скобочки в правой части ур-ния
    x = -1^1/3

    Получим ответ: x = (-1)^(1/3)

    Остальные 2 корня(ей) являются комплексными.
    сделаем замену:
    $$z = x$$
    тогда ур-ние будет таким:
    $$z^{3} = -1$$
    Любое комплексное число можно представить так:
    $$z = r e^{i p}$$
    подставляем в уравнение
    $$r^{3} e^{3 i p} = -1$$
    где
    $$r = 1$$
    - модуль комплексного числа
    Подставляем r:
    $$e^{3 i p} = -1$$
    Используя формулу Эйлера, найдём корни для p
    $$i \sin{\left(3 p \right)} + \cos{\left(3 p \right)} = -1$$
    значит
    $$\cos{\left(3 p \right)} = -1$$
    и
    $$\sin{\left(3 p \right)} = 0$$
    тогда
    $$p = \frac{2 \pi N}{3} + \frac{\pi}{3}$$
    где N=0,1,2,3,...
    Перебирая значения N и подставив p в формулу для z
    Значит, решением будет для z:
    $$z_{1} = -1$$
    $$z_{2} = \frac{1}{2} - \frac{\sqrt{3} i}{2}$$
    $$z_{3} = \frac{1}{2} + \frac{\sqrt{3} i}{2}$$
    делаем обратную замену
    $$z = x$$
    $$x = z$$

    $$x_{1} = \sqrt[3]{-1}$$
    Исключаем комплексные решения:
    Данное ур-ние не имеет решений,
    значит данное неравенство выполняется всегда или не выполняется никогда
    проверим
    подставляем произвольную точку, например
    x0 = 0

    $$0^{3} + 1 > 0$$
    1 > 0

    зн. неравенство выполняется всегда
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-1 < x, x < oo)
    $$-1 < x \wedge x < \infty$$
    Быстрый ответ 2 [src]
    (-1, oo)
    $$x\ in\ \left(-1, \infty\right)$$
    График
    x^3+1>0 (неравенство) /media/krcore-image-pods/hash/inequation/1/81/dd83431fa6819cc69725037ac66cb.png