tan(x)
lim sin (x)
p
x->-+
2
$$\lim_{x \to \frac{p}{2}^+} \sin^{\tan{\left(x \right)}}{\left(x \right)}$$
/p\
tan|-|
\2/
/ /p\\
|sin|-||
\ \2//
$$\sin^{\tan{\left(\frac{p}{2} \right)}}{\left(\frac{p}{2} \right)}$$
tan(x)
lim sin (x)
p
x->--
2
$$\lim_{x \to \frac{p}{2}^-} \sin^{\tan{\left(x \right)}}{\left(x \right)}$$
/p\
tan|-|
\2/
/ /p\\
|sin|-||
\ \2//
$$\sin^{\tan{\left(\frac{p}{2} \right)}}{\left(\frac{p}{2} \right)}$$