Предел функции x/(-2 + x)

Преподаватель очень удивится увидев твоё верное решение предела 😼

Знак предела
↑ Функция f(x) ?

v

Для конечных точек:

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
     /  x   \
 lim |------|
x->oo\-2 + x/
limx(xx2)\lim_{x \to \infty}\left(\frac{x}{x - 2}\right)
Подробное решение
Возьмём предел
limx(xx2)\lim_{x \to \infty}\left(\frac{x}{x - 2}\right)
Разделим числитель и знаменатель на x:
limx(xx2)\lim_{x \to \infty}\left(\frac{x}{x - 2}\right) =
limx112x\lim_{x \to \infty} \frac{1}{1 - \frac{2}{x}}
Сделаем Замену
u=1xu = \frac{1}{x}
тогда
limx112x=limu0+112u\lim_{x \to \infty} \frac{1}{1 - \frac{2}{x}} = \lim_{u \to 0^+} \frac{1}{1 - 2 u}
=
110=1\frac{1}{1 - 0} = 1

Получаем окончательный ответ:
limx(xx2)=1\lim_{x \to \infty}\left(\frac{x}{x - 2}\right) = 1
График
02468-8-6-4-2-1010-5050
Быстрый ответ [src]
1
11
Другие пределы при x→0, -oo, +oo, 1
limx(xx2)=1\lim_{x \to \infty}\left(\frac{x}{x - 2}\right) = 1
limx0(xx2)=0\lim_{x \to 0^-}\left(\frac{x}{x - 2}\right) = 0
Подробнее при x→0 слева
limx0+(xx2)=0\lim_{x \to 0^+}\left(\frac{x}{x - 2}\right) = 0
Подробнее при x→0 справа
limx1(xx2)=1\lim_{x \to 1^-}\left(\frac{x}{x - 2}\right) = -1
Подробнее при x→1 слева
limx1+(xx2)=1\lim_{x \to 1^+}\left(\frac{x}{x - 2}\right) = -1
Подробнее при x→1 справа
limx(xx2)=1\lim_{x \to -\infty}\left(\frac{x}{x - 2}\right) = 1
Подробнее при x→-oo
Метод Лопиталя
У нас есть неопределённость типа
oo/oo,

т.к. для числителя предел
limxx=\lim_{x \to \infty} x = \infty
и для знаменателя предел
limx(x2)=\lim_{x \to \infty}\left(x - 2\right) = \infty
Будем брать производные от числителя и знаминателя до тех пор, пока не избавимся от неопределённости.
limx(xx2)\lim_{x \to \infty}\left(\frac{x}{x - 2}\right)
=
limx(ddxxddx(x2))\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \left(x - 2\right)}\right)
=
limx1\lim_{x \to \infty} 1
=
limx1\lim_{x \to \infty} 1
=
11
Видно, что мы применили правило Лопиталя (взяли производную от числителя и знаменателя) 1 раз(а)
График
Предел функции x/(-2 + x) /media/krcore-image-pods/e/73/2fd1ad4b67430b9df4311862d71d4.png

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):
absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция - арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция - арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
exp(x)
Функция - экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
sin(x)
Функция - Синус от x
cos(x)
Функция - Косинус от x
sinh(x)
Функция - Синус гиперболический от x
cosh(x)
Функция - Косинус гиперболический от x
sqrt(x)
Функция - квадратный корень из x
sqr(x) или x^2
Функция - Квадрат x
ctg(x)
Функция - Котангенс от x
arcctg(x)
Функция - Арккотангенс от x
arcctgh(x)
Функция - Гиперболический арккотангенс от x
tg(x)
Функция - Тангенс от x
tgh(x)
Функция - Тангенс гиперболический от x
cbrt(x)
Функция - кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x
DiracDelta(x)
Дельта-функция Дирака
Heaviside(x)
Функция Хевисайда
Интегральные функции:
Si(x)
Интегральный синус от x
Ci(x)
Интегральный косинус от x
Shi(x)
Интегральный гиперболический синус от x
Chi(x)
Интегральный гиперболический косинус от x
В выражениях применяют следующие операции:
Действительные числа
вводить в виде 7.5, не 7,5
2*x
– умножение
3/x
– деление
x^3
– возведение в степень
x + 7
– сложение
x - 6
– вычитание
15/7
– дробь

Другие функции:
asec(x)
Функция – арксеканс от x
acsc(x)
Функция – арккосеканс от x
sec(x)
Функция – секанс от x
csc(x)
Функция – косеканс от x
floor(x)
Функция – округление x в меньшую сторону (пример floor(4.5) == 4.0)
ceiling(x)
Функция – округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция – Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция – гиперболический арксеканс от x
csch(x)
Функция – гиперболический косеканс от x
sech(x)
Функция – гиперболический секанс от x
acsch(x)
Функция – гиперболический арккосеканс от x

Постоянные:
pi
Число "Пи", которое примерно равно ~3.14159..
e
Число e – основание натурального логарифма, примерно равно ~2,7183..
i
Комплексная единица
oo
Символ бесконечности – знак для бесконечности