Задача a5 =7,12 , a6=15,58 (на арифметическую прогрессию)

Учитель очень удивится увидев твоё верное решение 😼

Решение

Решение [src]
    a_n - a_k
d = ---------
      n - k  
d=ak+ank+nd = \frac{- a_{k} + a_{n}}{- k + n}
a_1 = a_n + d*(-1 + n)
a1=an+d(n1)a_{1} = a_{n} + d \left(n - 1\right)
            (-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
                   n - k        
a1=an(ak+an)(n1)k+na_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}
    a_6 - a_5
d = ---------
        1    
d=a5+a61d = \frac{- a_{5} + a_{6}}{1}
            a_6 - a_5  
a_1 = a_6 - ---------*4
                1      
a1=a64a5+a61a_{1} = a_{6} - 4 \frac{- a_{5} + a_{6}}{1}
    779   178
    --- - ---
     50    25
d = ---------
        1    
d=17825+779501d = \frac{- \frac{178}{25} + \frac{779}{50}}{1}
            779   178  
            --- - ---  
      779    50    25  
a_1 = --- - ---------*5
       50       1      
a1=517825+779501+77950a_{1} = - 5 \frac{- \frac{178}{25} + \frac{779}{50}}{1} + \frac{779}{50}
    423
d = ---
     50
d=42350d = \frac{423}{50}
      -668 
a_1 = -----
        25 
a1=66825a_{1} = - \frac{668}{25}
Первый член [src]
      -668 
a_1 = -----
        25 
a1=66825a_{1} = - \frac{668}{25}
Разность [src]
    423
d = ---
     50
d=42350d = \frac{423}{50}
Пример [src]
...
Расширенный пример:
-668/25; -913/50; -49/5; -67/50; 178/25; 779/50...
     -668 
a1 = -----
       25 
a1=66825a_{1} = - \frac{668}{25}
     -913 
a2 = -----
       50 
a2=91350a_{2} = - \frac{913}{50}
a3 = -49/5
a3=495a_{3} = - \frac{49}{5}
     -67 
a4 = ----
      50 
a4=6750a_{4} = - \frac{67}{50}
     178
a5 = ---
      25
a5=17825a_{5} = \frac{178}{25}
     779
a6 = ---
      50
a6=77950a_{6} = \frac{779}{50}
...
n-член [src]
Шестой член
a_n = a_1 + d*(-1 + n)
an=a1+d(n1)a_{n} = a_{1} + d \left(n - 1\right)
      779
a_6 = ---
       50
a6=77950a_{6} = \frac{779}{50}
Сумма [src]
    n*(a_1 + a_n)
S = -------------
          2      
S=n(a1+an)2S = \frac{n \left(a_{1} + a_{n}\right)}{2}
Сумма шести членов
     -1671 
S6 = ------
       50  
S6=167150S_{6} = - \frac{1671}{50}