a_n - a_k
d = ---------
n - k $$d = \frac{- a_{k} + a_{n}}{- k + n}$$
$$a_{1} = a_{n} + d \left(n - 1\right)$$
(-1 + n)*(a_n - a_k)
a_1 = a_n - --------------------
n - k $$a_{1} = a_{n} - \frac{\left(- a_{k} + a_{n}\right) \left(n - 1\right)}{- k + n}$$
a_18 - a_1
d = ----------
17 $$d = \frac{- a_{1} + a_{18}}{17}$$
a_18 - a_1
a_1 = a_18 - ----------*16
17 $$a_{1} = a_{18} - \frac{- a_{1} + a_{18}}{17} \cdot 16$$
$$d = \frac{-8 + 13}{17}$$
13 - 8
a_1 = 13 - ------*17
17 $$a_{1} = \left(-1\right) \frac{-8 + 13}{17} \cdot 17 + 13$$
8; 141/17; 146/17; 151/17; 156/17; 161/17; 166/17; 171/17; 176/17; 181/17; 186/17; 191/17; 196/17; 201/17; 206/17; 211/17; 216/17; 13...
$$a_{2} = \frac{141}{17}$$
$$a_{3} = \frac{146}{17}$$
$$a_{4} = \frac{151}{17}$$
$$a_{5} = \frac{156}{17}$$
$$a_{6} = \frac{161}{17}$$
$$a_{7} = \frac{166}{17}$$
$$a_{8} = \frac{171}{17}$$
$$a_{9} = \frac{176}{17}$$
$$a_{10} = \frac{181}{17}$$
$$a_{11} = \frac{186}{17}$$
$$a_{12} = \frac{191}{17}$$
$$a_{13} = \frac{196}{17}$$
$$a_{14} = \frac{201}{17}$$
$$a_{15} = \frac{206}{17}$$
$$a_{16} = \frac{211}{17}$$
$$a_{17} = \frac{216}{17}$$
n*(a_1 + a_n)
S = -------------
2 $$S = \frac{n \left(a_{1} + a_{n}\right)}{2}$$
Сумма восемнадцати членов
18*(8 + 13)
S18 = -----------
2 $$S_{18} = \frac{18 \cdot \left(8 + 13\right)}{2}$$