/ / n\
|b_1*\1 - q /
|------------ for q != 1
S = < 1 - q
|
| b_1*n otherwise
\ $$S = \begin{cases} \frac{b_{1} \cdot \left(1 - q^{n}\right)}{1 - q} & \text{for}\: q \neq 1 \\b_{1} n & \text{otherwise} \end{cases}$$
/ 11\
49*\1 - 3/10 /
S11 = ---------------
1 - 3/10 $$S_{11} = \frac{49 \cdot \left(1 - \left(\frac{3}{10}\right)^{11}\right)}{- \frac{3}{10} + 1}$$
699998759971
S11 = ------------
10000000000 $$S_{11} = \frac{699998759971}{10000000000}$$
Произведение первых n-членов
[src]$$P_{n} = \left(b_{1} b_{n}\right)^{\frac{n}{2}}$$
11/2
/ 2893401 \
P11 = |49*-----------|
\ 10000000000/ $$P_{11} = \left(49 \cdot \frac{2893401}{10000000000}\right)^{\frac{11}{2}}$$
682065197112153201269787832668663662022270843
P11 = --------------------------------------------------------
10000000000000000000000000000000000000000000000000000000$$P_{11} = \frac{682065197112153201269787832668663662022270843}{10000000000000000000000000000000000000000000000000000000}$$
$$b_{n} = b_{1} q^{n - 1}$$
2893401
b_11 = -----------
10000000000$$b_{11} = \frac{2893401}{10000000000}$$