Найти производную y' = f'(x) = acos(2*x)^2 (арккосинус от (2 умножить на х) в квадрате) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная acos(2*x)^2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
    2     
acos (2*x)
$$\operatorname{acos}^{2}{\left (2 x \right )}$$
График
Первая производная [src]
 -4*acos(2*x)
-------------
   __________
  /        2 
\/  1 - 4*x  
$$- \frac{4 \operatorname{acos}{\left (2 x \right )}}{\sqrt{- 4 x^{2} + 1}}$$
Вторая производная [src]
   /    1       2*x*acos(2*x)\
-8*|--------- + -------------|
   |        2             3/2|
   |-1 + 4*x    /       2\   |
   \            \1 - 4*x /   /
$$- 8 \left(\frac{2 x \operatorname{acos}{\left (2 x \right )}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}} + \frac{1}{4 x^{2} - 1}\right)$$
Третья производная [src]
   /                                     2          \
   |    acos(2*x)         6*x        12*x *acos(2*x)|
16*|- ------------- + ------------ - ---------------|
   |            3/2              2              5/2 |
   |  /       2\      /        2\     /       2\    |
   \  \1 - 4*x /      \-1 + 4*x /     \1 - 4*x /    /
$$16 \left(- \frac{12 x^{2} \operatorname{acos}{\left (2 x \right )}}{\left(- 4 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{6 x}{\left(4 x^{2} - 1\right)^{2}} - \frac{\operatorname{acos}{\left (2 x \right )}}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$
График
Производная acos(2*x)^2 /media/krcore-image-pods/d/3e/c01396ee50ef7093a5a0625406222.png