/ 2 \
| sin (-1 + 5*x) |
25*|1 - ------------------|*cos(-1 + 5*x)
| 2 |
\ 1 - cos (-1 + 5*x)/
-----------------------------------------
____________________
/ 2
\/ 1 - cos (-1 + 5*x)
$$\frac{25 \cos{\left (5 x - 1 \right )}}{\sqrt{- \cos^{2}{\left (5 x - 1 \right )} + 1}} \left(1 - \frac{\sin^{2}{\left (5 x - 1 \right )}}{- \cos^{2}{\left (5 x - 1 \right )} + 1}\right)$$
/ 2 2 2 2 \
| sin (-1 + 5*x) 3*cos (-1 + 5*x) 3*cos (-1 + 5*x)*sin (-1 + 5*x)|
125*|-1 + ------------------ - ------------------ + -------------------------------|*sin(-1 + 5*x)
| 2 2 2 |
| 1 - cos (-1 + 5*x) 1 - cos (-1 + 5*x) / 2 \ |
\ \1 - cos (-1 + 5*x)/ /
--------------------------------------------------------------------------------------------------
____________________
/ 2
\/ 1 - cos (-1 + 5*x)
$$\frac{125 \sin{\left (5 x - 1 \right )}}{\sqrt{- \cos^{2}{\left (5 x - 1 \right )} + 1}} \left(-1 + \frac{\sin^{2}{\left (5 x - 1 \right )}}{- \cos^{2}{\left (5 x - 1 \right )} + 1} - \frac{3 \cos^{2}{\left (5 x - 1 \right )}}{- \cos^{2}{\left (5 x - 1 \right )} + 1} + \frac{3 \sin^{2}{\left (5 x - 1 \right )} \cos^{2}{\left (5 x - 1 \right )}}{\left(- \cos^{2}{\left (5 x - 1 \right )} + 1\right)^{2}}\right)$$