Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x _________ / log(acos(x)) 1 \
\/ acos(x) *|- ------------ - ---------------------|
| 2 ________ |
| x / 2 |
\ x*\/ 1 - x *acos(x)/
$$\left(- \frac{1}{x \sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} - \frac{1}{x^{2}} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \operatorname{acos}^{\frac{1}{x}}{\left (x \right )}$$
/ 2 \
|/log(acos(x)) 1 \ |
||------------ + -------------------| |
|| x ________ | |
|| / 2 | |
x _________ |\ \/ 1 - x *acos(x)/ 1 2*log(acos(x)) 1 2 |
\/ acos(x) *|------------------------------------- - ------------------- + -------------- + -------------------- + ----------------------|
| 2 3/2 3 / 2\ 2 ________ |
| x / 2\ x x*\-1 + x /*acos (x) 2 / 2 |
\ \1 - x / *acos(x) x *\/ 1 - x *acos(x)/
$$\left(- \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}{\left (x \right )}} + \frac{1}{x \left(x^{2} - 1\right) \operatorname{acos}^{2}{\left (x \right )}} + \frac{1}{x^{2}} \left(\frac{1}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{1}{x} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right)^{2} + \frac{2}{x^{2} \sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{2}{x^{3}} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \operatorname{acos}^{\frac{1}{x}}{\left (x \right )}$$
/ 3 \
|/log(acos(x)) 1 \ /log(acos(x)) 1 \ / 1 2*log(acos(x)) 1 2 \ |
||------------ + -------------------| 3*|------------ + -------------------|*|- ------------------- + -------------- + -------------------- + ----------------------| |
|| x ________ | | x ________ | | 3/2 3 / 2\ 2 ________ | |
|| / 2 | | / 2 | | / 2\ x x*\-1 + x /*acos (x) 2 / 2 | |
x _________ |\ \/ 1 - x *acos(x)/ 3 6*log(acos(x)) 2 2 3*x \ \/ 1 - x *acos(x)/ \ \1 - x / *acos(x) x *\/ 1 - x *acos(x)/ 3 6 |
-\/ acos(x) *|------------------------------------- + ------------------- + -------------- - --------------------- + ---------------------- + ------------------- + ------------------------------------------------------------------------------------------------------------------------------- + --------------------- + ----------------------|
| 3 2 4 3/2 3/2 5/2 x 2 / 2\ 2 ________ |
| x / 2\ 2 x / 2\ / 2\ 3 / 2\ x *\-1 + x /*acos (x) 3 / 2 |
\ \-1 + x / *acos (x) x*\1 - x / *acos(x) x*\1 - x / *acos (x) \1 - x / *acos(x) x *\/ 1 - x *acos(x)/
$$- \left(\frac{3 x}{\left(- x^{2} + 1\right)^{\frac{5}{2}} \operatorname{acos}{\left (x \right )}} + \frac{3}{\left(x^{2} - 1\right)^{2} \operatorname{acos}^{2}{\left (x \right )}} + \frac{3}{x} \left(\frac{1}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{1}{x} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \left(- \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}{\left (x \right )}} + \frac{1}{x \left(x^{2} - 1\right) \operatorname{acos}^{2}{\left (x \right )}} + \frac{2}{x^{2} \sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{2}{x^{3}} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) - \frac{2}{x \left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}{\left (x \right )}} + \frac{2}{x \left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{3}{\left (x \right )}} + \frac{3}{x^{2} \left(x^{2} - 1\right) \operatorname{acos}^{2}{\left (x \right )}} + \frac{1}{x^{3}} \left(\frac{1}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{1}{x} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right)^{3} + \frac{6}{x^{3} \sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + \frac{6}{x^{4}} \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \operatorname{acos}^{\frac{1}{x}}{\left (x \right )}$$