Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
3*x / 3*x \
acos (x)*|3*log(acos(x)) - -------------------|
| ________ |
| / 2 |
\ \/ 1 - x *acos(x)/
$$\left(- \frac{3 x}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} + 3 \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \operatorname{acos}^{3 x}{\left (x \right )}$$
/ 2 \
| 2 x x |
| ----------- + ----------- - -----------------|
| ________ 3/2 / 2\ |
| 2 / 2 / 2\ \-1 + x /*acos(x)|
3*x | / x \ \/ 1 - x \1 - x / |
3*acos (x)*|3*|-log(acos(x)) + -------------------| - ---------------------------------------------|
| | ________ | acos(x) |
| | / 2 | |
\ \ \/ 1 - x *acos(x)/ /
$$3 \left(3 \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} - \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right)^{2} - \frac{1}{\operatorname{acos}{\left (x \right )}} \left(\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{x}{\left(x^{2} - 1\right) \operatorname{acos}{\left (x \right )}} + \frac{2}{\sqrt{- x^{2} + 1}}\right)\right) \operatorname{acos}^{3 x}{\left (x \right )}$$
/ 3 2 / 2 \\
| 3 3*x 4*x 2*x 3*x / x \ | 2 x x ||
| - ----------------- + ----------- + ----------- + -------------------- + ------------------ 9*|-log(acos(x)) + -------------------|*|----------- + ----------- - -----------------||
| / 2\ 5/2 3/2 3/2 2 | ________ | | ________ 3/2 / 2\ ||
| 3 \-1 + x /*acos(x) / 2\ / 2\ / 2\ 2 / 2\ | / 2 | | / 2 / 2\ \-1 + x /*acos(x)||
3*x | / x \ \1 - x / \1 - x / \1 - x / *acos (x) \-1 + x / *acos(x) \ \/ 1 - x *acos(x)/ \\/ 1 - x \1 - x / /|
3*acos (x)*|- 9*|-log(acos(x)) + -------------------| - ------------------------------------------------------------------------------------------- + ---------------------------------------------------------------------------------------|
| | ________ | acos(x) acos(x) |
| | / 2 | |
\ \ \/ 1 - x *acos(x)/ /
$$3 \left(- 9 \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} - \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right)^{3} + \frac{9}{\operatorname{acos}{\left (x \right )}} \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left (x \right )}} - \log{\left (\operatorname{acos}{\left (x \right )} \right )}\right) \left(\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{x}{\left(x^{2} - 1\right) \operatorname{acos}{\left (x \right )}} + \frac{2}{\sqrt{- x^{2} + 1}}\right) - \frac{1}{\operatorname{acos}{\left (x \right )}} \left(\frac{3 x^{3}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{3 x^{2}}{\left(x^{2} - 1\right)^{2} \operatorname{acos}{\left (x \right )}} + \frac{4 x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2 x}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{2}{\left (x \right )}} - \frac{3}{\left(x^{2} - 1\right) \operatorname{acos}{\left (x \right )}}\right)\right) \operatorname{acos}^{3 x}{\left (x \right )}$$