2
-3*acot (log(x))
----------------
/ 2 \
x*\1 + log (x)/
$$- \frac{3 \operatorname{acot}^{2}{\left (\log{\left (x \right )} \right )}}{x \left(\log^{2}{\left (x \right )} + 1\right)}$$
/ 2 2*acot(log(x))*log(x) \
3*|----------- + --------------------- + acot(log(x))|*acot(log(x))
| 2 2 |
\1 + log (x) 1 + log (x) /
-------------------------------------------------------------------
2 / 2 \
x *\1 + log (x)/
$$\frac{3 \operatorname{acot}{\left (\log{\left (x \right )} \right )}}{x^{2} \left(\log^{2}{\left (x \right )} + 1\right)} \left(\operatorname{acot}{\left (\log{\left (x \right )} \right )} + \frac{2 \log{\left (x \right )} \operatorname{acot}{\left (\log{\left (x \right )} \right )}}{\log^{2}{\left (x \right )} + 1} + \frac{2}{\log^{2}{\left (x \right )} + 1}\right)$$
/ 2 2 2 2 \
| 1 2 acot (log(x)) 3*acot(log(x)) 6*acot(log(x))*log(x) 4*acot (log(x))*log (x) 3*acot (log(x))*log(x)|
6*|- -------------- - acot (log(x)) + ------------- - -------------- - --------------------- - ----------------------- - ----------------------|
| 2 2 2 2 2 2 |
| / 2 \ 1 + log (x) 1 + log (x) / 2 \ / 2 \ 1 + log (x) |
\ \1 + log (x)/ \1 + log (x)/ \1 + log (x)/ /
------------------------------------------------------------------------------------------------------------------------------------------------
3 / 2 \
x *\1 + log (x)/
$$\frac{1}{x^{3} \left(\log^{2}{\left (x \right )} + 1\right)} \left(- 6 \operatorname{acot}^{2}{\left (\log{\left (x \right )} \right )} - \frac{18 \log{\left (x \right )} \operatorname{acot}^{2}{\left (\log{\left (x \right )} \right )}}{\log^{2}{\left (x \right )} + 1} + \frac{6 \operatorname{acot}^{2}{\left (\log{\left (x \right )} \right )}}{\log^{2}{\left (x \right )} + 1} - \frac{18 \operatorname{acot}{\left (\log{\left (x \right )} \right )}}{\log^{2}{\left (x \right )} + 1} - \frac{24 \log^{2}{\left (x \right )} \operatorname{acot}^{2}{\left (\log{\left (x \right )} \right )}}{\left(\log^{2}{\left (x \right )} + 1\right)^{2}} - \frac{36 \log{\left (x \right )} \operatorname{acot}{\left (\log{\left (x \right )} \right )}}{\left(\log^{2}{\left (x \right )} + 1\right)^{2}} - \frac{6}{\left(\log^{2}{\left (x \right )} + 1\right)^{2}}\right)$$