acot(1 + x) 1
----------- - ----------------------
2 / 2\
(1 - x) \1 + (1 + x) /*(1 - x)
$$- \frac{1}{\left(- x + 1\right) \left(\left(x + 1\right)^{2} + 1\right)} + \frac{\operatorname{acot}{\left (x + 1 \right )}}{\left(- x + 1\right)^{2}}$$
/ 1 1 + x acot(1 + x)\
-2*|----------------------- + --------------- + -----------|
|/ 2\ 2 2 |
|\1 + (1 + x) /*(-1 + x) / 2\ (-1 + x) |
\ \1 + (1 + x) / /
------------------------------------------------------------
-1 + x
$$- \frac{1}{x - 1} \left(\frac{2 x + 2}{\left(\left(x + 1\right)^{2} + 1\right)^{2}} + \frac{2}{\left(x - 1\right) \left(\left(x + 1\right)^{2} + 1\right)} + \frac{2}{\left(x - 1\right)^{2}} \operatorname{acot}{\left (x + 1 \right )}\right)$$
/ 2 \
| 1 3 3*acot(1 + x) 4*(1 + x) 3*(1 + x) |
2*|- --------------- + ------------------------ + ------------- + --------------- + ------------------------|
| 2 / 2\ 2 3 3 2 |
| / 2\ \1 + (1 + x) /*(-1 + x) (-1 + x) / 2\ / 2\ |
\ \1 + (1 + x) / \1 + (1 + x) / \1 + (1 + x) / *(-1 + x)/
-------------------------------------------------------------------------------------------------------------
-1 + x
$$\frac{1}{x - 1} \left(\frac{8 \left(x + 1\right)^{2}}{\left(\left(x + 1\right)^{2} + 1\right)^{3}} - \frac{2}{\left(\left(x + 1\right)^{2} + 1\right)^{2}} + \frac{6 x + 6}{\left(x - 1\right) \left(\left(x + 1\right)^{2} + 1\right)^{2}} + \frac{6}{\left(x - 1\right)^{2} \left(\left(x + 1\right)^{2} + 1\right)} + \frac{6}{\left(x - 1\right)^{3}} \operatorname{acot}{\left (x + 1 \right )}\right)$$