Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
x / x \
acot (x)*|- ---------------- + log(acot(x))|
| / 2\ |
\ \1 + x /*acot(x) /
$$\left(- \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} + \log{\left (\operatorname{acot}{\left (x \right )} \right )}\right) \operatorname{acot}^{x}{\left (x \right )}$$
/ 2 \
| 2*x x |
| 2 - ------ + ----------------|
| 2 2 / 2\ |
x |/ x \ 1 + x \1 + x /*acot(x)|
acot (x)*||-log(acot(x)) + ----------------| - -----------------------------|
|| / 2\ | / 2\ |
\\ \1 + x /*acot(x)/ \1 + x /*acot(x) /
$$\left(\left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} - \log{\left (\operatorname{acot}{\left (x \right )} \right )}\right)^{2} - \frac{1}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} \left(- \frac{2 x^{2}}{x^{2} + 1} + \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} + 2\right)\right) \operatorname{acot}^{x}{\left (x \right )}$$
/ 3 2 / 2 \\
| 3 8*x 6*x 2*x / x \ | 2*x x ||
| -8*x + ------- + ------ - ---------------- + ----------------- 3*|-log(acot(x)) + ----------------|*|2 - ------ + ----------------||
| 3 acot(x) 2 / 2\ / 2\ 2 | / 2\ | | 2 / 2\ ||
x | / x \ 1 + x \1 + x /*acot(x) \1 + x /*acot (x) \ \1 + x /*acot(x)/ \ 1 + x \1 + x /*acot(x)/|
acot (x)*|- |-log(acot(x)) + ----------------| - -------------------------------------------------------------- + --------------------------------------------------------------------|
| | / 2\ | 2 / 2\ |
| \ \1 + x /*acot(x)/ / 2\ \1 + x /*acot(x) |
\ \1 + x / *acot(x) /
$$\left(- \left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} - \log{\left (\operatorname{acot}{\left (x \right )} \right )}\right)^{3} + \frac{3}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} \left(\frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} - \log{\left (\operatorname{acot}{\left (x \right )} \right )}\right) \left(- \frac{2 x^{2}}{x^{2} + 1} + \frac{x}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} + 2\right) - \frac{1}{\left(x^{2} + 1\right)^{2} \operatorname{acot}{\left (x \right )}} \left(\frac{8 x^{3}}{x^{2} + 1} - \frac{6 x^{2}}{\left(x^{2} + 1\right) \operatorname{acot}{\left (x \right )}} - 8 x + \frac{2 x}{\left(x^{2} + 1\right) \operatorname{acot}^{2}{\left (x \right )}} + \frac{3}{\operatorname{acot}{\left (x \right )}}\right)\right) \operatorname{acot}^{x}{\left (x \right )}$$