x
2 *log(2)
-------------
__________
/ 2*x
\/ 1 - 2
$$\frac{2^{x} \log{\left(2 \right)}}{\sqrt{1 - 2^{2 x}}}$$
/ 2*x \
x 2 | 2 |
2 *log (2)*|1 + --------|
| 2*x|
\ 1 - 2 /
-------------------------
__________
/ 2*x
\/ 1 - 2
$$\frac{2^{x} \left(\frac{2^{2 x}}{1 - 2^{2 x}} + 1\right) \log{\left(2 \right)}^{2}}{\sqrt{1 - 2^{2 x}}}$$
/ 4*x 2*x \
x 3 | 3*2 4*2 |
2 *log (2)*|1 + ----------- + --------|
| 2 2*x|
| / 2*x\ 1 - 2 |
\ \1 - 2 / /
---------------------------------------
__________
/ 2*x
\/ 1 - 2
$$\frac{2^{x} \left(\frac{3 \cdot 2^{4 x}}{\left(1 - 2^{2 x}\right)^{2}} + \frac{4 \cdot 2^{2 x}}{1 - 2^{2 x}} + 1\right) \log{\left(2 \right)}^{3}}{\sqrt{1 - 2^{2 x}}}$$