-2*sin(2*x)
------------------
_______________
/ 2
\/ 1 - cos (2*x)
$$- \frac{2 \sin{\left(2 x \right)}}{\sqrt{1 - \cos^{2}{\left(2 x \right)}}}$$
/ 2 \
| sin (2*x) |
4*|-1 + -------------|*cos(2*x)
| 2 |
\ 1 - cos (2*x)/
-------------------------------
_______________
/ 2
\/ 1 - cos (2*x)
$$\frac{4 \left(-1 + \frac{\sin^{2}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}}\right) \cos{\left(2 x \right)}}{\sqrt{1 - \cos^{2}{\left(2 x \right)}}}$$
/ 2 2 2 2 \
| sin (2*x) 3*cos (2*x) 3*cos (2*x)*sin (2*x)|
8*|1 - ------------- + ------------- - ---------------------|*sin(2*x)
| 2 2 2 |
| 1 - cos (2*x) 1 - cos (2*x) / 2 \ |
\ \1 - cos (2*x)/ /
----------------------------------------------------------------------
_______________
/ 2
\/ 1 - cos (2*x)
$$\frac{8 \cdot \left(1 - \frac{\sin^{2}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} + \frac{3 \cos^{2}{\left(2 x \right)}}{1 - \cos^{2}{\left(2 x \right)}} - \frac{3 \sin^{2}{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{\left(1 - \cos^{2}{\left(2 x \right)}\right)^{2}}\right) \sin{\left(2 x \right)}}{\sqrt{1 - \cos^{2}{\left(2 x \right)}}}$$