cos(x)
---------------------------
____________ ________
2*\/ 1 - sin(x) *\/ sin(x)
$$\frac{\cos{\left (x \right )}}{2 \sqrt{- \sin{\left (x \right )} + 1} \sqrt{\sin{\left (x \right )}}}$$
2 2
________ cos (x) cos (x)
- 2*\/ sin(x) - --------- + -----------------------
3/2 ________
sin (x) (1 - sin(x))*\/ sin(x)
----------------------------------------------------
____________
4*\/ 1 - sin(x)
$$\frac{1}{4 \sqrt{- \sin{\left (x \right )} + 1}} \left(- 2 \sqrt{\sin{\left (x \right )}} - \frac{\cos^{2}{\left (x \right )}}{\sin^{\frac{3}{2}}{\left (x \right )}} + \frac{\cos^{2}{\left (x \right )}}{\left(- \sin{\left (x \right )} + 1\right) \sqrt{\sin{\left (x \right )}}}\right)$$
/ ________ 2 2 2 \
| 2 6*\/ sin(x) 3*cos (x) 2*cos (x) 3*cos (x) |
|---------- - ------------ + --------- - ---------------------- + ------------------------|*cos(x)
| ________ 1 - sin(x) 5/2 3/2 2 ________|
\\/ sin(x) sin (x) (1 - sin(x))*sin (x) (1 - sin(x)) *\/ sin(x) /
--------------------------------------------------------------------------------------------------
____________
8*\/ 1 - sin(x)
$$\frac{\cos{\left (x \right )}}{8 \sqrt{- \sin{\left (x \right )} + 1}} \left(\frac{2}{\sqrt{\sin{\left (x \right )}}} + \frac{3 \cos^{2}{\left (x \right )}}{\sin^{\frac{5}{2}}{\left (x \right )}} - \frac{6 \sqrt{\sin{\left (x \right )}}}{- \sin{\left (x \right )} + 1} - \frac{2 \cos^{2}{\left (x \right )}}{\left(- \sin{\left (x \right )} + 1\right) \sin^{\frac{3}{2}}{\left (x \right )}} + \frac{3 \cos^{2}{\left (x \right )}}{\left(- \sin{\left (x \right )} + 1\right)^{2} \sqrt{\sin{\left (x \right )}}}\right)$$