/ 2 2 \
| n *cos (x) |
n*|-1 + --------------|*sin(x)
| 2 2 |
\ 1 - n *sin (x)/
------------------------------
________________
/ 2 2
\/ 1 - n *sin (x)
$$\frac{n \sin{\left (x \right )}}{\sqrt{- n^{2} \sin^{2}{\left (x \right )} + 1}} \left(\frac{n^{2} \cos^{2}{\left (x \right )}}{- n^{2} \sin^{2}{\left (x \right )} + 1} - 1\right)$$
/ 2 2 2 2 4 2 2 \
| n *cos (x) 3*n *sin (x) 3*n *cos (x)*sin (x)|
n*|-1 + -------------- - -------------- + --------------------|*cos(x)
| 2 2 2 2 2 |
| 1 - n *sin (x) 1 - n *sin (x) / 2 2 \ |
\ \1 - n *sin (x)/ /
----------------------------------------------------------------------
________________
/ 2 2
\/ 1 - n *sin (x)
$$\frac{n \cos{\left (x \right )}}{\sqrt{- n^{2} \sin^{2}{\left (x \right )} + 1}} \left(\frac{3 n^{4} \sin^{2}{\left (x \right )} \cos^{2}{\left (x \right )}}{\left(- n^{2} \sin^{2}{\left (x \right )} + 1\right)^{2}} - \frac{3 n^{2} \sin^{2}{\left (x \right )}}{- n^{2} \sin^{2}{\left (x \right )} + 1} + \frac{n^{2} \cos^{2}{\left (x \right )}}{- n^{2} \sin^{2}{\left (x \right )} + 1} - 1\right)$$