Найти производную y' = f'(x) = asin(sin(sin(x))) (арксинус от (синус от (синус от (х)))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asin(sin(sin(x)))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
asin(sin(sin(x)))
$$\operatorname{asin}{\left (\sin{\left (\sin{\left (x \right )} \right )} \right )}$$
График
Первая производная [src]
  cos(x)*cos(sin(x)) 
---------------------
   __________________
  /        2         
\/  1 - sin (sin(x)) 
$$\frac{\cos{\left (x \right )} \cos{\left (\sin{\left (x \right )} \right )}}{\sqrt{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1}}$$
Вторая производная [src]
                                                2       2                    
     2                                       cos (x)*cos (sin(x))*sin(sin(x))
- cos (x)*sin(sin(x)) - cos(sin(x))*sin(x) + --------------------------------
                                                            2                
                                                     1 - sin (sin(x))        
-----------------------------------------------------------------------------
                               __________________                            
                              /        2                                     
                            \/  1 - sin (sin(x))                             
$$\frac{1}{\sqrt{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1}} \left(- \sin{\left (x \right )} \cos{\left (\sin{\left (x \right )} \right )} - \sin{\left (\sin{\left (x \right )} \right )} \cos^{2}{\left (x \right )} + \frac{\sin{\left (\sin{\left (x \right )} \right )} \cos^{2}{\left (x \right )} \cos^{2}{\left (\sin{\left (x \right )} \right )}}{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1}\right)$$
Третья производная [src]
/                                                               2       3                2       2                            2                                   2       3            2        \       
|                  2                                         cos (x)*cos (sin(x))   3*cos (x)*sin (sin(x))*cos(sin(x))   3*cos (sin(x))*sin(x)*sin(sin(x))   3*cos (x)*cos (sin(x))*sin (sin(x))|       
|-cos(sin(x)) - cos (x)*cos(sin(x)) + 3*sin(x)*sin(sin(x)) + -------------------- - ---------------------------------- - --------------------------------- + -----------------------------------|*cos(x)
|                                                                     2                             2                                    2                                             2        |       
|                                                              1 - sin (sin(x))              1 - sin (sin(x))                     1 - sin (sin(x))                   /       2        \         |       
\                                                                                                                                                                    \1 - sin (sin(x))/         /       
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                            __________________                                                                                          
                                                                                           /        2                                                                                                   
                                                                                         \/  1 - sin (sin(x))                                                                                           
$$\frac{\cos{\left (x \right )}}{\sqrt{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1}} \left(3 \sin{\left (x \right )} \sin{\left (\sin{\left (x \right )} \right )} - \cos^{2}{\left (x \right )} \cos{\left (\sin{\left (x \right )} \right )} - \cos{\left (\sin{\left (x \right )} \right )} - \frac{3 \sin{\left (x \right )} \sin{\left (\sin{\left (x \right )} \right )} \cos^{2}{\left (\sin{\left (x \right )} \right )}}{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1} - \frac{3 \sin^{2}{\left (\sin{\left (x \right )} \right )} \cos^{2}{\left (x \right )} \cos{\left (\sin{\left (x \right )} \right )}}{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1} + \frac{\cos^{2}{\left (x \right )} \cos^{3}{\left (\sin{\left (x \right )} \right )}}{- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1} + \frac{3 \sin^{2}{\left (\sin{\left (x \right )} \right )} \cos^{2}{\left (x \right )} \cos^{3}{\left (\sin{\left (x \right )} \right )}}{\left(- \sin^{2}{\left (\sin{\left (x \right )} \right )} + 1\right)^{2}}\right)$$