cos(x) + sin(x)
---------------------------
________________________
/ 2
\/ 1 - (sin(x) - cos(x))
$$\frac{\sin{\left (x \right )} + \cos{\left (x \right )}}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}}$$
/ 2 \
| (cos(x) + sin(x)) |
|-1 + -----------------------|*(-cos(x) + sin(x))
| 2|
\ 1 - (-cos(x) + sin(x)) /
-------------------------------------------------
_________________________
/ 2
\/ 1 - (-cos(x) + sin(x))
$$\frac{1}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}} \left(-1 + \frac{\left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}\right) \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)$$
/ 2 2 2 2\
| (cos(x) + sin(x)) 3*(-cos(x) + sin(x)) 3*(-cos(x) + sin(x)) *(cos(x) + sin(x)) |
(cos(x) + sin(x))*|-1 + ----------------------- - ----------------------- + ----------------------------------------|
| 2 2 2 |
| 1 - (-cos(x) + sin(x)) 1 - (-cos(x) + sin(x)) / 2\ |
\ \1 - (-cos(x) + sin(x)) / /
---------------------------------------------------------------------------------------------------------------------
_________________________
/ 2
\/ 1 - (-cos(x) + sin(x))
$$\frac{1}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}} \left(\sin{\left (x \right )} + \cos{\left (x \right )}\right) \left(-1 - \frac{3 \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1} + \frac{\left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1} + \frac{3 \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} \left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{\left(- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1\right)^{2}}\right)$$