Найти производную y' = f'(x) = asin(sin(x)-cos(x)) (арксинус от (синус от (х) минус косинус от (х))) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asin(sin(x)-cos(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
asin(sin(x) - cos(x))
$$\operatorname{asin}{\left (\sin{\left (x \right )} - \cos{\left (x \right )} \right )}$$
График
Первая производная [src]
      cos(x) + sin(x)      
---------------------------
   ________________________
  /                      2 
\/  1 - (sin(x) - cos(x))  
$$\frac{\sin{\left (x \right )} + \cos{\left (x \right )}}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}}$$
Вторая производная [src]
/                         2  \                   
|        (cos(x) + sin(x))   |                   
|-1 + -----------------------|*(-cos(x) + sin(x))
|                           2|                   
\     1 - (-cos(x) + sin(x)) /                   
-------------------------------------------------
              _________________________          
             /                       2           
           \/  1 - (-cos(x) + sin(x))            
$$\frac{1}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}} \left(-1 + \frac{\left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}\right) \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)$$
Третья производная [src]
                  /                         2                          2                        2                  2\
                  |        (cos(x) + sin(x))       3*(-cos(x) + sin(x))     3*(-cos(x) + sin(x)) *(cos(x) + sin(x)) |
(cos(x) + sin(x))*|-1 + ----------------------- - ----------------------- + ----------------------------------------|
                  |                           2                         2                                   2       |
                  |     1 - (-cos(x) + sin(x))    1 - (-cos(x) + sin(x))           /                      2\        |
                  \                                                                \1 - (-cos(x) + sin(x)) /        /
---------------------------------------------------------------------------------------------------------------------
                                                _________________________                                            
                                               /                       2                                             
                                             \/  1 - (-cos(x) + sin(x))                                              
$$\frac{1}{\sqrt{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1}} \left(\sin{\left (x \right )} + \cos{\left (x \right )}\right) \left(-1 - \frac{3 \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1} + \frac{\left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1} + \frac{3 \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} \left(\sin{\left (x \right )} + \cos{\left (x \right )}\right)^{2}}{\left(- \left(\sin{\left (x \right )} - \cos{\left (x \right )}\right)^{2} + 1\right)^{2}}\right)$$