/ 2 \
/ 2 \ | 1 + tan (x)|
\1 + tan (x)/*|2 + -----------|*tan(x)
| 2 |
\ 1 - tan (x)/
--------------------------------------
_____________
/ 2
\/ 1 - tan (x)
$$\frac{\tan{\left (x \right )}}{\sqrt{- \tan^{2}{\left (x \right )} + 1}} \left(2 + \frac{\tan^{2}{\left (x \right )} + 1}{- \tan^{2}{\left (x \right )} + 1}\right) \left(\tan^{2}{\left (x \right )} + 1\right)$$
/ 2 2 \
| / 2 \ / 2 \ 2 2 / 2 \|
/ 2 \ | 2 \1 + tan (x)/ 3*\1 + tan (x)/ *tan (x) 6*tan (x)*\1 + tan (x)/|
\1 + tan (x)/*|2 + 6*tan (x) + -------------- + ------------------------ + -----------------------|
| 2 2 2 |
| 1 - tan (x) / 2 \ 1 - tan (x) |
\ \1 - tan (x)/ /
---------------------------------------------------------------------------------------------------
_____________
/ 2
\/ 1 - tan (x)
$$\frac{1}{\sqrt{- \tan^{2}{\left (x \right )} + 1}} \left(\tan^{2}{\left (x \right )} + 1\right) \left(6 \tan^{2}{\left (x \right )} + 2 + \frac{\left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{- \tan^{2}{\left (x \right )} + 1} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )}}{- \tan^{2}{\left (x \right )} + 1} + \frac{3 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} \tan^{2}{\left (x \right )}}{\left(- \tan^{2}{\left (x \right )} + 1\right)^{2}}\right)$$