Найти производную y' = f'(x) = asin(x)/tan(x) (арксинус от (х) делить на тангенс от (х)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asin(x)/tan(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
asin(x)
-------
 tan(x)
$$\frac{\operatorname{asin}{\left (x \right )}}{\tan{\left (x \right )}}$$
График
Первая производная [src]
                     /        2   \        
        1            \-1 - tan (x)/*asin(x)
------------------ + ----------------------
   ________                    2           
  /      2                  tan (x)        
\/  1 - x  *tan(x)                         
$$\frac{\operatorname{asin}{\left (x \right )}}{\tan^{2}{\left (x \right )}} \left(- \tan^{2}{\left (x \right )} - 1\right) + \frac{1}{\sqrt{- x^{2} + 1} \tan{\left (x \right )}}$$
Вторая производная [src]
                                                                            2        
                                           /       2   \       /       2   \         
     x          /       2   \            2*\1 + tan (x)/     2*\1 + tan (x)/ *asin(x)
----------- - 2*\1 + tan (x)/*asin(x) - ------------------ + ------------------------
        3/2                                ________                     2            
/     2\                                  /      2                   tan (x)         
\1 - x /                                \/  1 - x  *tan(x)                           
-------------------------------------------------------------------------------------
                                        tan(x)                                       
$$\frac{1}{\tan{\left (x \right )}} \left(\frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\tan^{2}{\left (x \right )}} \operatorname{asin}{\left (x \right )} - 2 \left(\tan^{2}{\left (x \right )} + 1\right) \operatorname{asin}{\left (x \right )} - \frac{2 \tan^{2}{\left (x \right )} + 2}{\sqrt{- x^{2} + 1} \tan{\left (x \right )}}\right)$$
Третья производная [src]
                                                              3                                                                      2                    2                              
                                                 /       2   \               /       2   \               2              /       2   \        /       2   \                 /       2   \ 
        1              /       2   \           6*\1 + tan (x)/ *asin(x)    6*\1 + tan (x)/            3*x             6*\1 + tan (x)/     10*\1 + tan (x)/ *asin(x)    3*x*\1 + tan (x)/ 
------------------ - 4*\1 + tan (x)/*asin(x) - ------------------------ - ------------------ + ------------------ + ------------------- + ------------------------- - -------------------
        3/2                                               4                  ________                  5/2             ________                       2                       3/2        
/     2\                                               tan (x)              /      2           /     2\               /      2     3               tan (x)            /     2\       2   
\1 - x /   *tan(x)                                                        \/  1 - x  *tan(x)   \1 - x /   *tan(x)   \/  1 - x  *tan (x)                               \1 - x /   *tan (x)
$$\frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}} \tan{\left (x \right )}} - \frac{3 x \left(\tan^{2}{\left (x \right )} + 1\right)}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \tan^{2}{\left (x \right )}} - \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right)^{3}}{\tan^{4}{\left (x \right )}} \operatorname{asin}{\left (x \right )} + \frac{10 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\tan^{2}{\left (x \right )}} \operatorname{asin}{\left (x \right )} - 4 \left(\tan^{2}{\left (x \right )} + 1\right) \operatorname{asin}{\left (x \right )} + \frac{6 \left(\tan^{2}{\left (x \right )} + 1\right)^{2}}{\sqrt{- x^{2} + 1} \tan^{3}{\left (x \right )}} - \frac{6 \tan^{2}{\left (x \right )} + 6}{\sqrt{- x^{2} + 1} \tan{\left (x \right )}} + \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \tan{\left (x \right )}}$$