Найти производную y' = f'(x) = asin((x-1)/x) (арксинус от ((х минус 1) делить на х)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asin((x-1)/x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
    /x - 1\
asin|-----|
    \  x  /
$$\operatorname{asin}{\left (\frac{1}{x} \left(x - 1\right) \right )}$$
График
Первая производная [src]
     1   x - 1      
     - - -----      
     x      2       
           x        
--------------------
      ______________
     /            2 
    /      (x - 1)  
   /   1 - -------- 
  /            2    
\/            x     
$$\frac{\frac{1}{x} - \frac{1}{x^{2}} \left(x - 1\right)}{\sqrt{1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}}}$$
Вторая производная [src]
             /     /    -1 + x\         \
             |     |1 - ------|*(-1 + x)|
/    -1 + x\ |     \      x   /         |
|1 - ------|*|-2 + ---------------------|
\      x   / |         /            2\  |
             |         |    (-1 + x) |  |
             |       x*|1 - ---------|  |
             |         |         2   |  |
             \         \        x    /  /
-----------------------------------------
                  _______________        
                 /             2         
          2     /      (-1 + x)          
         x *   /   1 - ---------         
              /             2            
            \/             x             
$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}}} \left(-2 + \frac{\left(1 - \frac{1}{x} \left(x - 1\right)\right) \left(x - 1\right)}{x \left(1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}\right)}\right) \left(1 - \frac{1}{x} \left(x - 1\right)\right)$$
Третья производная [src]
             /                               2                                                      \
             |        4*(-1 + x)   3*(-1 + x)                                            2          |
             |    1 - ---------- + -----------     /    -1 + x\              /    -1 + x\          2|
             |            x              2       4*|1 - ------|*(-1 + x)   3*|1 - ------| *(-1 + x) |
/    -1 + x\ |                          x          \      x   /              \      x   /           |
|1 - ------|*|6 + ---------------------------- - ----------------------- + -------------------------|
\      x   / |                       2                /            2\                           2   |
             |               (-1 + x)                 |    (-1 + x) |            /            2\    |
             |           1 - ---------              x*|1 - ---------|          2 |    (-1 + x) |    |
             |                    2                   |         2   |         x *|1 - ---------|    |
             |                   x                    \        x    /            |         2   |    |
             \                                                                   \        x    /    /
-----------------------------------------------------------------------------------------------------
                                                _______________                                      
                                               /             2                                       
                                        3     /      (-1 + x)                                        
                                       x *   /   1 - ---------                                       
                                            /             2                                          
                                          \/             x                                           
$$\frac{1}{x^{3} \sqrt{1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}}} \left(1 - \frac{1}{x} \left(x - 1\right)\right) \left(6 + \frac{1 - \frac{1}{x} \left(4 x - 4\right) + \frac{3}{x^{2}} \left(x - 1\right)^{2}}{1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}} - \frac{4 \left(1 - \frac{1}{x} \left(x - 1\right)\right) \left(x - 1\right)}{x \left(1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}\right)} + \frac{3 \left(1 - \frac{1}{x} \left(x - 1\right)\right)^{2} \left(x - 1\right)^{2}}{x^{2} \left(1 - \frac{1}{x^{2}} \left(x - 1\right)^{2}\right)^{2}}\right)$$