Найти производную y' = f'(x) = (asin(x))^2 ((арксинус от (х)) в квадрате) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная (asin(x))^2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
    2   
asin (x)
$$\operatorname{asin}^{2}{\left(x \right)}$$
d /    2   \
--\asin (x)/
dx          
$$\frac{d}{d x} \operatorname{asin}^{2}{\left(x \right)}$$
График
Первая производная [src]
 2*asin(x) 
-----------
   ________
  /      2 
\/  1 - x  
$$\frac{2 \operatorname{asin}{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
Вторая производная [src]
  /     1       x*asin(x) \
2*|- ------- + -----------|
  |        2           3/2|
  |  -1 + x    /     2\   |
  \            \1 - x /   /
$$2 \left(\frac{x \operatorname{asin}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} - \frac{1}{x^{2} - 1}\right)$$
Третья производная [src]
  /                              2        \
  |  asin(x)        3*x       3*x *asin(x)|
2*|----------- + ---------- + ------------|
  |        3/2            2           5/2 |
  |/     2\      /      2\    /     2\    |
  \\1 - x /      \-1 + x /    \1 - x /    /
$$2 \cdot \left(\frac{3 x^{2} \operatorname{asin}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \frac{3 x}{\left(x^{2} - 1\right)^{2}} + \frac{\operatorname{asin}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$
График
Производная (asin(x))^2 /media/krcore-image-pods/hash/derivative/d/36/c37e1b1f0bc1531dbaf038ec9ab10.png