2*x
-----------
________
/ 4
\/ 1 - x
$$\frac{2 x}{\sqrt{- x^{4} + 1}}$$
/ 4 \
| 2*x |
2*|1 + ------|
| 4|
\ 1 - x /
--------------
________
/ 4
\/ 1 - x
$$\frac{\frac{4 x^{4}}{- x^{4} + 1} + 2}{\sqrt{- x^{4} + 1}}$$
/ 4 \
3 | 6*x |
4*x *|5 + ------|
| 4|
\ 1 - x /
-----------------
3/2
/ 4\
\1 - x /
$$\frac{4 x^{3}}{\left(- x^{4} + 1\right)^{\frac{3}{2}}} \left(\frac{6 x^{4}}{- x^{4} + 1} + 5\right)$$