Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
cosh(x) / cosh(x) \
asin (x)*|log(asin(x))*sinh(x) + -------------------|
| ________ |
| / 2 |
\ \/ 1 - x *asin(x)/
$$\left(\log{\left (\operatorname{asin}{\left (x \right )} \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right) \operatorname{asin}^{\cosh{\left (x \right )}}{\left (x \right )}$$
/ 2 \
cosh(x) |/ cosh(x) \ cosh(x) 2*sinh(x) x*cosh(x) |
asin (x)*||log(asin(x))*sinh(x) + -------------------| + cosh(x)*log(asin(x)) + ------------------ + ------------------- + -------------------|
|| ________ | / 2\ 2 ________ 3/2 |
|| / 2 | \-1 + x /*asin (x) / 2 / 2\ |
\\ \/ 1 - x *asin(x)/ \/ 1 - x *asin(x) \1 - x / *asin(x)/
$$\left(\frac{x \cosh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + \left(\log{\left (\operatorname{asin}{\left (x \right )} \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right)^{2} + \log{\left (\operatorname{asin}{\left (x \right )} \right )} \cosh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\left(x^{2} - 1\right) \operatorname{asin}^{2}{\left (x \right )}} + \frac{2 \sinh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right) \operatorname{asin}^{\cosh{\left (x \right )}}{\left (x \right )}$$
/ 3 2 \
cosh(x) |/ cosh(x) \ / cosh(x) \ / cosh(x) 2*sinh(x) x*cosh(x) \ cosh(x) 2*cosh(x) 3*cosh(x) 3*sinh(x) 3*x*cosh(x) 3*x*sinh(x) 3*x *cosh(x) |
asin (x)*||log(asin(x))*sinh(x) + -------------------| + log(asin(x))*sinh(x) + 3*|log(asin(x))*sinh(x) + -------------------|*|cosh(x)*log(asin(x)) + ------------------ + ------------------- + -------------------| + ------------------- + -------------------- + ------------------- + ------------------ - ------------------- + ------------------- + -------------------|
|| ________ | | ________ | | / 2\ 2 ________ 3/2 | 3/2 3/2 ________ / 2\ 2 2 3/2 5/2 |
|| / 2 | | / 2 | | \-1 + x /*asin (x) / 2 / 2\ | / 2\ / 2\ 3 / 2 \-1 + x /*asin (x) / 2\ 2 / 2\ / 2\ |
\\ \/ 1 - x *asin(x)/ \ \/ 1 - x *asin(x)/ \ \/ 1 - x *asin(x) \1 - x / *asin(x)/ \1 - x / *asin(x) \1 - x / *asin (x) \/ 1 - x *asin(x) \-1 + x / *asin (x) \1 - x / *asin(x) \1 - x / *asin(x)/
$$\left(\frac{3 x^{2} \cosh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{5}{2}} \operatorname{asin}{\left (x \right )}} - \frac{3 x \cosh{\left (x \right )}}{\left(x^{2} - 1\right)^{2} \operatorname{asin}^{2}{\left (x \right )}} + \frac{3 x \sinh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + \left(\log{\left (\operatorname{asin}{\left (x \right )} \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right)^{3} + 3 \left(\log{\left (\operatorname{asin}{\left (x \right )} \right )} \sinh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right) \left(\frac{x \cosh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + \log{\left (\operatorname{asin}{\left (x \right )} \right )} \cosh{\left (x \right )} + \frac{\cosh{\left (x \right )}}{\left(x^{2} - 1\right) \operatorname{asin}^{2}{\left (x \right )}} + \frac{2 \sinh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}}\right) + \log{\left (\operatorname{asin}{\left (x \right )} \right )} \sinh{\left (x \right )} + \frac{3 \sinh{\left (x \right )}}{\left(x^{2} - 1\right) \operatorname{asin}^{2}{\left (x \right )}} + \frac{3 \cosh{\left (x \right )}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + \frac{\cosh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + \frac{2 \cosh{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}^{3}{\left (x \right )}}\right) \operatorname{asin}^{\cosh{\left (x \right )}}{\left (x \right )}$$