Найти производную y' = f'(x) = asin(x)^(3) (арксинус от (х) в степени (3)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asin(x)^(3)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
    3   
asin (x)
$$\operatorname{asin}^{3}{\left (x \right )}$$
График
Первая производная [src]
       2   
 3*asin (x)
-----------
   ________
  /      2 
\/  1 - x  
$$\frac{3 \operatorname{asin}^{2}{\left (x \right )}}{\sqrt{- x^{2} + 1}}$$
Вторая производная [src]
  /     2       x*asin(x) \        
3*|- ------- + -----------|*asin(x)
  |        2           3/2|        
  |  -1 + x    /     2\   |        
  \            \1 - x /   /        
$$3 \left(\frac{x \operatorname{asin}{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{2}{x^{2} - 1}\right) \operatorname{asin}{\left (x \right )}$$
Третья производная [src]
  /                    2          2     2                 \
  |     2          asin (x)    3*x *asin (x)   6*x*asin(x)|
3*|----------- + ----------- + ------------- + -----------|
  |        3/2           3/2            5/2              2|
  |/     2\      /     2\       /     2\        /      2\ |
  \\1 - x /      \1 - x /       \1 - x /        \-1 + x / /
$$3 \left(\frac{3 x^{2} \operatorname{asin}^{2}{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{6 x \operatorname{asin}{\left (x \right )}}{\left(x^{2} - 1\right)^{2}} + \frac{\operatorname{asin}^{2}{\left (x \right )}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}\right)$$