Подробное решение
Не могу найти шаги в поиске этой производной.
Но производная
Ответ:
/ 2\ / 2 \
\x / | x |
(asin(x)) *|2*x*log(asin(x)) + -------------------|
| ________ |
| / 2 |
\ \/ 1 - x *asin(x)/
$$\left(\frac{x^{2}}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 x \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) \operatorname{asin}^{x^{2}}{\left (x \right )}$$
/ 2\ / 2 2 3 \
\x / | 2 / x \ x x 4*x |
(asin(x)) *|2*log(asin(x)) + x *|2*log(asin(x)) + -------------------| + ------------------ + ------------------- + -------------------|
| | ________ | / 2\ 2 3/2 ________ |
| | / 2 | \-1 + x /*asin (x) / 2\ / 2 |
\ \ \/ 1 - x *asin(x)/ \1 - x / *asin(x) \/ 1 - x *asin(x)/
$$\left(\frac{x^{3}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + x^{2} \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right)^{2} + \frac{x^{2}}{\left(x^{2} - 1\right) \operatorname{asin}^{2}{\left (x \right )}} + \frac{4 x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) \operatorname{asin}^{x^{2}}{\left (x \right )}$$
/ 4 2 3 2 \
| 6 3*x 7*x 3*x 2*x 6*x |
| ----------- + ----------- + ----------- - ------------------ + -------------------- + ----------------- |
| ________ 5/2 3/2 2 3/2 / 2\ |
/ 2\ | 3 / 2 / 2\ / 2\ / 2\ / 2\ 2 \-1 + x /*asin(x) / 2 3 \|
\x / | 3 / x \ \/ 1 - x \1 - x / \1 - x / \-1 + x / *asin(x) \1 - x / *asin (x) / x \ | x x 4*x ||
(asin(x)) *|x *|2*log(asin(x)) + -------------------| + ------------------------------------------------------------------------------------------------------- + 3*x*|2*log(asin(x)) + -------------------|*|2*log(asin(x)) + ------------------ + ------------------- + -------------------||
| | ________ | asin(x) | ________ | | / 2\ 2 3/2 ________ ||
| | / 2 | | / 2 | | \-1 + x /*asin (x) / 2\ / 2 ||
\ \ \/ 1 - x *asin(x)/ \ \/ 1 - x *asin(x)/ \ \1 - x / *asin(x) \/ 1 - x *asin(x)//
$$\left(x^{3} \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right)^{3} + 3 x \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) \left(\frac{x^{3}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}{\left (x \right )}} + \frac{x^{2}}{\left(x^{2} - 1\right) \operatorname{asin}^{2}{\left (x \right )}} + \frac{4 x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) + \frac{1}{\operatorname{asin}{\left (x \right )}} \left(\frac{3 x^{4}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} - \frac{3 x^{3}}{\left(x^{2} - 1\right)^{2} \operatorname{asin}{\left (x \right )}} + \frac{7 x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2 x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}^{2}{\left (x \right )}} + \frac{6 x}{\left(x^{2} - 1\right) \operatorname{asin}{\left (x \right )}} + \frac{6}{\sqrt{- x^{2} + 1}}\right)\right) \operatorname{asin}^{x^{2}}{\left (x \right )}$$