Подробное решение
Заменим .
В силу правила, применим: получим
Затем примените цепочку правил. Умножим на :
Не могу найти шаги в поиске этой производной.
Но производная
В результате последовательности правил:
Ответ:
2*x / 2*x \
asin (x)*|2*log(asin(x)) + -------------------|
| ________ |
| / 2 |
\ \/ 1 - x *asin(x)/
$$\left(\frac{2 x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + 2 \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) \operatorname{asin}^{2 x}{\left (x \right )}$$
/ 2 \
| 2 x x |
| ----------- + ----------- + -----------------|
| ________ 3/2 / 2\ |
| 2 / 2 / 2\ \-1 + x /*asin(x)|
2*x | / x \ \/ 1 - x \1 - x / |
2*asin (x)*|2*|------------------- + log(asin(x))| + ---------------------------------------------|
| | ________ | asin(x) |
| | / 2 | |
\ \\/ 1 - x *asin(x) / /
$$2 \left(2 \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right)^{2} + \frac{1}{\operatorname{asin}{\left (x \right )}} \left(\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{x}{\left(x^{2} - 1\right) \operatorname{asin}{\left (x \right )}} + \frac{2}{\sqrt{- x^{2} + 1}}\right)\right) \operatorname{asin}^{2 x}{\left (x \right )}$$
/ 3 2 / 2 \\
| 3*x 3 4*x 3*x 2*x / x \ | 2 x x ||
| ----------- + ----------------- + ----------- - ------------------ + -------------------- 6*|------------------- + log(asin(x))|*|----------- + ----------- + -----------------||
| 5/2 / 2\ 3/2 2 3/2 | ________ | | ________ 3/2 / 2\ ||
| 3 / 2\ \-1 + x /*asin(x) / 2\ / 2\ / 2\ 2 | / 2 | | / 2 / 2\ \-1 + x /*asin(x)||
2*x | / x \ \1 - x / \1 - x / \-1 + x / *asin(x) \1 - x / *asin (x) \\/ 1 - x *asin(x) / \\/ 1 - x \1 - x / /|
2*asin (x)*|4*|------------------- + log(asin(x))| + ----------------------------------------------------------------------------------------- + --------------------------------------------------------------------------------------|
| | ________ | asin(x) asin(x) |
| | / 2 | |
\ \\/ 1 - x *asin(x) / /
$$2 \left(4 \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right)^{3} + \frac{6}{\operatorname{asin}{\left (x \right )}} \left(\frac{x}{\sqrt{- x^{2} + 1} \operatorname{asin}{\left (x \right )}} + \log{\left (\operatorname{asin}{\left (x \right )} \right )}\right) \left(\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{x}{\left(x^{2} - 1\right) \operatorname{asin}{\left (x \right )}} + \frac{2}{\sqrt{- x^{2} + 1}}\right) + \frac{1}{\operatorname{asin}{\left (x \right )}} \left(\frac{3 x^{3}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} - \frac{3 x^{2}}{\left(x^{2} - 1\right)^{2} \operatorname{asin}{\left (x \right )}} + \frac{4 x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2 x}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{asin}^{2}{\left (x \right )}} + \frac{3}{\left(x^{2} - 1\right) \operatorname{asin}{\left (x \right )}}\right)\right) \operatorname{asin}^{2 x}{\left (x \right )}$$