/ 2 \
| -1 + tanh (x)| / 2 \
2*|1 - -------------|*\-1 + tanh (x)/*tanh(x)
| 2 |
\ 1 + tanh (x)/
---------------------------------------------
2
1 + tanh (x)
$$\frac{2 \tanh{\left (x \right )}}{\tanh^{2}{\left (x \right )} + 1} \left(- \frac{\tanh^{2}{\left (x \right )} - 1}{\tanh^{2}{\left (x \right )} + 1} + 1\right) \left(\tanh^{2}{\left (x \right )} - 1\right)$$
/ 2 2 \
| / 2 \ / 2 \ 2 2 / 2 \|
/ 2 \ | 2 \-1 + tanh (x)/ 4*\-1 + tanh (x)/ *tanh (x) 6*tanh (x)*\-1 + tanh (x)/|
2*\-1 + tanh (x)/*|1 - 3*tanh (x) + ---------------- - --------------------------- + --------------------------|
| 2 2 2 |
| 1 + tanh (x) / 2 \ 1 + tanh (x) |
\ \1 + tanh (x)/ /
----------------------------------------------------------------------------------------------------------------
2
1 + tanh (x)
$$\frac{2}{\tanh^{2}{\left (x \right )} + 1} \left(\tanh^{2}{\left (x \right )} - 1\right) \left(\frac{\left(\tanh^{2}{\left (x \right )} - 1\right)^{2}}{\tanh^{2}{\left (x \right )} + 1} - \frac{4 \left(\tanh^{2}{\left (x \right )} - 1\right)^{2} \tanh^{2}{\left (x \right )}}{\left(\tanh^{2}{\left (x \right )} + 1\right)^{2}} + \frac{6 \left(\tanh^{2}{\left (x \right )} - 1\right) \tanh^{2}{\left (x \right )}}{\tanh^{2}{\left (x \right )} + 1} - 3 \tanh^{2}{\left (x \right )} + 1\right)$$