/ 2 \
| 2*sin (-1 + 2*x) |
-4*|1 + ------------------|*cos(-1 + 2*x)
| 2 |
\ 1 + cos (-1 + 2*x)/
-----------------------------------------
2
1 + cos (-1 + 2*x)
$$- \frac{4 \cos{\left (2 x - 1 \right )}}{\cos^{2}{\left (2 x - 1 \right )} + 1} \left(1 + \frac{2 \sin^{2}{\left (2 x - 1 \right )}}{\cos^{2}{\left (2 x - 1 \right )} + 1}\right)$$
/ 2 2 2 2 \
| 6*cos (-1 + 2*x) 2*sin (-1 + 2*x) 8*cos (-1 + 2*x)*sin (-1 + 2*x)|
8*|1 - ------------------ + ------------------ - -------------------------------|*sin(-1 + 2*x)
| 2 2 2 |
| 1 + cos (-1 + 2*x) 1 + cos (-1 + 2*x) / 2 \ |
\ \1 + cos (-1 + 2*x)/ /
-----------------------------------------------------------------------------------------------
2
1 + cos (-1 + 2*x)
$$\frac{8 \sin{\left (2 x - 1 \right )}}{\cos^{2}{\left (2 x - 1 \right )} + 1} \left(1 + \frac{2 \sin^{2}{\left (2 x - 1 \right )}}{\cos^{2}{\left (2 x - 1 \right )} + 1} - \frac{6 \cos^{2}{\left (2 x - 1 \right )}}{\cos^{2}{\left (2 x - 1 \right )} + 1} - \frac{8 \sin^{2}{\left (2 x - 1 \right )} \cos^{2}{\left (2 x - 1 \right )}}{\left(\cos^{2}{\left (2 x - 1 \right )} + 1\right)^{2}}\right)$$