cos(x)
-----------
2
1 + sin (x)
$$\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
/ 2 \
| 2*cos (x) |
-|1 + -----------|*sin(x)
| 2 |
\ 1 + sin (x)/
--------------------------
2
1 + sin (x)
$$- \frac{\left(1 + \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}\right) \sin{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
/ 2 2 2 2 \
| 2*cos (x) 6*sin (x) 8*cos (x)*sin (x)|
|-1 - ----------- + ----------- + -----------------|*cos(x)
| 2 2 2 |
| 1 + sin (x) 1 + sin (x) / 2 \ |
\ \1 + sin (x)/ /
-----------------------------------------------------------
2
1 + sin (x)
$$\frac{\left(-1 + \frac{6 \sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} - \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{8 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$