2/x\
tan |-|
1 \2/
- + -------
2 2
-----------------
2
/ /x\ \
1 + |tan|-| + 1|
\ \2/ /
$$\frac{\frac{\tan^{2}{\left(\frac{x}{2} \right)}}{2} + \frac{1}{2}}{\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1}$$
/ / 2/x\\ / /x\\ \
| |1 + tan |-||*|1 + tan|-|| |
/ 2/x\\ | \ \2// \ \2// /x\|
|1 + tan |-||*|- -------------------------- + tan|-||
\ \2// | 2 \2/|
| / /x\\ |
| 1 + |1 + tan|-|| |
\ \ \2// /
-----------------------------------------------------
/ 2\
| / /x\\ |
2*|1 + |1 + tan|-|| |
\ \ \2// /
$$\frac{\left(\tan{\left(\frac{x}{2} \right)} - \frac{\left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)}{\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1}\right) \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)}{2 \left(\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1\right)}$$
/ 2 2 2 \
| 2/x\ / 2/x\\ / 2/x\\ / /x\\ / 2/x\\ / /x\\ /x\|
| 3*tan |-| |1 + tan |-|| |1 + tan |-|| *|1 + tan|-|| 3*|1 + tan |-||*|1 + tan|-||*tan|-||
/ 2/x\\ |1 \2/ \ \2// \ \2// \ \2// \ \2// \ \2// \2/|
|1 + tan |-||*|- + --------- - --------------------- + ---------------------------- - -----------------------------------|
\ \2// |4 4 / 2\ 2 / 2\ |
| | / /x\\ | / 2\ | / /x\\ | |
| 4*|1 + |1 + tan|-|| | | / /x\\ | 2*|1 + |1 + tan|-|| | |
| \ \ \2// / |1 + |1 + tan|-|| | \ \ \2// / |
\ \ \ \2// / /
--------------------------------------------------------------------------------------------------------------------------
2
/ /x\\
1 + |1 + tan|-||
\ \2//
$$\frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \left(\frac{3 \tan^{2}{\left(\frac{x}{2} \right)}}{4} + \frac{1}{4} - \frac{3 \left(\tan{\left(\frac{x}{2} \right)} + 1\right) \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right) \tan{\left(\frac{x}{2} \right)}}{2 \left(\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1\right)} - \frac{\left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{4 \left(\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1\right)} + \frac{\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} \left(\tan^{2}{\left(\frac{x}{2} \right)} + 1\right)^{2}}{\left(\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1\right)^{2}}\right)}{\left(\tan{\left(\frac{x}{2} \right)} + 1\right)^{2} + 1}$$