Найти производную y' = f'(x) = asec(x) (asec(х)) - функции. Найдём значение производной функции в точке. [Есть ответ!]

Производная asec(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
asec(x)
$$\operatorname{asec}{\left (x \right )}$$
График
Первая производная [src]
       1        
----------------
        ________
 2     /     1  
x *   /  1 - -- 
     /        2 
   \/        x  
$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$
Вторая производная [src]
 /         1     \ 
-|2 + -----------| 
 |     2 /    1 \| 
 |    x *|1 - --|| 
 |       |     2|| 
 \       \    x // 
-------------------
          ________ 
   3     /     1   
  x *   /  1 - --  
       /        2  
     \/        x   
$$- \frac{2 + \frac{1}{x^{2} \left(1 - \frac{1}{x^{2}}\right)}}{x^{3} \sqrt{1 - \frac{1}{x^{2}}}}$$
Третья производная [src]
         3              7     
6 + ------------ + -----------
               2    2 /    1 \
     4 /    1 \    x *|1 - --|
    x *|1 - --|       |     2|
       |     2|       \    x /
       \    x /               
------------------------------
               ________       
        4     /     1         
       x *   /  1 - --        
            /        2        
          \/        x         
$$\frac{1}{x^{4} \sqrt{1 - \frac{1}{x^{2}}}} \left(6 + \frac{7}{x^{2} \left(1 - \frac{1}{x^{2}}\right)} + \frac{3}{x^{4} \left(1 - \frac{1}{x^{2}}\right)^{2}}\right)$$