asin(2*t)
2*4 *log(4)
-------------------
__________
/ 2
\/ 1 - 4*t
$$\frac{2 \cdot 4^{\operatorname{asin}{\left (2 t \right )}}}{\sqrt{- 4 t^{2} + 1}} \log{\left (4 \right )}$$
asin(2*t) / log(4) 2*t \
4*4 *|- --------- + -------------|*log(4)
| 2 3/2|
| -1 + 4*t / 2\ |
\ \1 - 4*t / /
$$4 \cdot 4^{\operatorname{asin}{\left (2 t \right )}} \left(\frac{2 t}{\left(- 4 t^{2} + 1\right)^{\frac{3}{2}}} - \frac{\log{\left (4 \right )}}{4 t^{2} - 1}\right) \log{\left (4 \right )}$$
/ 2 2 \
asin(2*t) | 1 log (4) 12*t 6*t*log(4) |
8*4 *|------------- + ------------- + ------------- + ------------|*log(4)
| 3/2 3/2 5/2 2|
|/ 2\ / 2\ / 2\ / 2\ |
\\1 - 4*t / \1 - 4*t / \1 - 4*t / \-1 + 4*t / /
$$8 \cdot 4^{\operatorname{asin}{\left (2 t \right )}} \left(\frac{12 t^{2}}{\left(- 4 t^{2} + 1\right)^{\frac{5}{2}}} + \frac{6 t \log{\left (4 \right )}}{\left(4 t^{2} - 1\right)^{2}} + \frac{1}{\left(- 4 t^{2} + 1\right)^{\frac{3}{2}}} + \frac{\log^{2}{\left (4 \right )}}{\left(- 4 t^{2} + 1\right)^{\frac{3}{2}}}\right) \log{\left (4 \right )}$$