Производная 2/(x-1)^2

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   2    
--------
       2
(x - 1) 
2(x1)2\frac{2}{\left(x - 1\right)^{2}}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=(x1)2u = \left(x - 1\right)^{2}.

    2. В силу правила, применим: 1u\frac{1}{u} получим 1u2- \frac{1}{u^{2}}

    3. Затем примените цепочку правил. Умножим на ddx(x1)2\frac{d}{d x} \left(x - 1\right)^{2}:

      1. Заменим u=x1u = x - 1.

      2. В силу правила, применим: u2u^{2} получим 2u2 u

      3. Затем примените цепочку правил. Умножим на ddx(x1)\frac{d}{d x}\left(x - 1\right):

        1. дифференцируем x1x - 1 почленно:

          1. В силу правила, применим: xx получим 11

          2. Производная постоянной 1-1 равна нулю.

          В результате: 11

        В результате последовательности правил:

        2x22 x - 2

      В результате последовательности правил:

      2x2(x1)4- \frac{2 x - 2}{\left(x - 1\right)^{4}}

    Таким образом, в результате: 4x4(x1)4- \frac{4 x - 4}{\left(x - 1\right)^{4}}

  2. Теперь упростим:

    4(x1)3- \frac{4}{\left(x - 1\right)^{3}}


Ответ:

4(x1)3- \frac{4}{\left(x - 1\right)^{3}}

График
02468-8-6-4-2-1010-1000010000
Первая производная [src]
2*(2 - 2*x)
-----------
         4 
  (x - 1)  
4x+4(x1)4\frac{- 4 x + 4}{\left(x - 1\right)^{4}}
Вторая производная [src]
    12   
---------
        4
(-1 + x) 
12(x1)4\frac{12}{\left(x - 1\right)^{4}}
Третья производная [src]
   -48   
---------
        5
(-1 + x) 
48(x1)5- \frac{48}{\left(x - 1\right)^{5}}